Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
et:avr:registers [2010/02/09 16:58] raivo.sellet:avr:registers [2020/07/20 09:00] (current) – external edit 127.0.0.1
Line 1: Line 1:
 ====== Registrid ====== ====== Registrid ======
  
-Üks kõige raskemini mõistetavaid asju mikrokontrollerite juures on algajate jaoks tavaliselt "register". Sellest mõistest ei pääse üle ega ümber, kui on soov  mikrokontrolleritega tegeleda. Ka käesolev materjal eeldab, et lugeja on tuttav registri mõistega ja seepärast on järgnevalt seda algajale ka võimalikult lihtsalt selgitatud.+Üks kõige raskemini mõistetavaid asju mikrokontrollerite juures on algajate jaoks tavaliselt "register". Sellest mõistest ei pääse üle ega ümber, kui on soov mikrokontrolleritega tegeleda. Ka käesolev materjal eeldab, et lugeja saab tuttavaks registri mõistega ja seepärast on järgnevalt seda algajale ka võimalikult lihtsalt selgitatud.
  
 ===== Olemus ===== ===== Olemus =====
Line 16: Line 16:
   * Paus   * Paus
  
-Iga nupp teeb midagi, kuid ainult õigel kasutamisel. Näiteks stopp-nupp ei tee  midagi enne, kui kassett on mängima pandud - alles siis teeb see midagi arusaadavat ja peatab mängimise. Edasi- või tagasikerimise nuppe võib aga igal ajal vajutada, sest linti hakatakse kerima nii poole mängimisekui seismise ajal. Salvestama hakkab kassetimängija aga ainult siis, kui salvestamise nupp koos mängimise nupuga alla vajutada. Mõni on ehk proovinud mitu nuppu või kõik nupud korraga alla vajutada - sel juhul võis mängija mida iganes teha või üldse katki minna.+Iga nupp teeb midagi, kuid ainult õigel kasutamisel. Näiteks stopp-nupp ei tee  midagi enne, kui kassett on mängima pandud - alles siis teeb see midagi arusaadavat ja peatab mängimise. Edasi- või tagasikerimise nuppe võib aga igal ajal vajutada, sest linti hakatakse kerima nii poole mängimise kui seismise ajal. Salvestama hakkab kassetimängija aga ainult siis, kui salvestamise nupp koos mängimise nupuga alla vajutada. Mõni on ehk proovinud mitu nuppu või kõik nupud korraga alla vajutada - sel juhul võis mängija mida iganes teha või üldse katki minna.
  
 Mikrokontrolleri registriga on sama lugu nagu kassetimängija nuppudega - iga nupuke paneb seal õigel kasutamisel midagi käima. Valesid nuppe vajutades mikrokontroller (enamasti) küll katki ei lähe, kuid ei tööta ka. Tegelikult registris selliseid nuppe nagu kodumasinatel muidugi pole, on hoopis hulk transistore, mis elektrit sisse ja välja lülitavad. Lihtsamatel mikrokontrolleritel on registris 8 transistoridel põhinevat elektrilist lülitit. Registrit võib aga käsitleda nagu 8-bitist arvu, milles iga bitt tähistab ühe lüliti olekut. Näiteks biti väärtus 1 võib tähendada, et lüliti on sees ja 0, et lüliti on väljas. Mikrokontrolleri registriga on sama lugu nagu kassetimängija nuppudega - iga nupuke paneb seal õigel kasutamisel midagi käima. Valesid nuppe vajutades mikrokontroller (enamasti) küll katki ei lähe, kuid ei tööta ka. Tegelikult registris selliseid nuppe nagu kodumasinatel muidugi pole, on hoopis hulk transistore, mis elektrit sisse ja välja lülitavad. Lihtsamatel mikrokontrolleritel on registris 8 transistoridel põhinevat elektrilist lülitit. Registrit võib aga käsitleda nagu 8-bitist arvu, milles iga bitt tähistab ühe lüliti olekut. Näiteks biti väärtus 1 võib tähendada, et lüliti on sees ja 0, et lüliti on väljas.
Line 41: Line 41:
 Heksadetsimaalarvus pole numbrid mitte 0 ja 1, nagu binaarsüsteemis, ega 0-st 9-ni, nagu kümnendsüsteemis, vaid 0-st F-ni. Üks heksadetsimaalnumber moodustub neljast bitist. Kõrvalolev tabel näitab heksadetsimaalnumbritele vastavaid binaararve. Binaararve teisendatakse heksadetsimaalarvuks lugedes bitte nelja kaupa, alates madalamast järgust. Järkusid loetakse paremalt vasakule ja nende nummerdamist alustatakse nullist. Näiteks binaararvu 1110 madalaima ehk 0. järgu väärtus on 0 ja kõrgeima ehk 3. järgu väärtus on 1. Eespool toodud näidisregistri binaarväärtus 01100001 on heksadetsimaalkujul 61, mis C-keeles kirjutatakse kujul 0x61 (ees on null). Heksadetsimaalarvus pole numbrid mitte 0 ja 1, nagu binaarsüsteemis, ega 0-st 9-ni, nagu kümnendsüsteemis, vaid 0-st F-ni. Üks heksadetsimaalnumber moodustub neljast bitist. Kõrvalolev tabel näitab heksadetsimaalnumbritele vastavaid binaararve. Binaararve teisendatakse heksadetsimaalarvuks lugedes bitte nelja kaupa, alates madalamast järgust. Järkusid loetakse paremalt vasakule ja nende nummerdamist alustatakse nullist. Näiteks binaararvu 1110 madalaima ehk 0. järgu väärtus on 0 ja kõrgeima ehk 3. järgu väärtus on 1. Eespool toodud näidisregistri binaarväärtus 01100001 on heksadetsimaalkujul 61, mis C-keeles kirjutatakse kujul 0x61 (ees on null).
  
-~~CL~~+Üksikute bittide muutmiseks arvus (registris, muutujas või kus iganes) tuleb kasutada binaartehteid. Binaartehe on tehe binaararvude vahel, kus nende arvude iga biti vahel toimub omaette loogikatehe. Enamasti on mikrokontrollerites kasutusel neli binaartehet, millel kõigil on mitu nimetust. Järgnevalt on toodud kõigile neljale binaartehtele vastav loogikatehe üksiku biti või bittidega.
  
-[{{  :images:logic:logic_not.png?133|Eitus}}] +[{{  :images:logic:logic_all_4.png?550  |Eitus, loogiline korrutamine, loogiline liitmine ja mittesamaväärsus}}]
-[{{  :images:logic:logic_and.png?133|Korrutamine}}] +
-[{{  :images:logic:logic_or.png?133|Liitmine}}] +
-[{{  :images:logic:logic_xor.png?133|Mittesamaväärsus}}]+
  
-Üksikute bittide muutmiseks arvus (registris, muutujas või kus iganes) tuleb kasutada binaartehteid. Binaartehe on tehe binaararvude vahel, kus nende arvude iga biti vahel toimub omaette loogikatehe. Enamasti on mikrokontrollerites kasutusel neli binaartehet, millel kõigil on mitu nimetust. Kõrval on toodud kõigile neljale binaartehtele vastav loogikatehe üksiku biti või bittidega. 
  
   * **Eitus / Inversioon** \\ Eitus muudab biti väärtuse vastupidiseks ehk 0 muutub 1 ja 1 muutub 0. C-keeles on eituse märk "~".   * **Eitus / Inversioon** \\ Eitus muudab biti väärtuse vastupidiseks ehk 0 muutub 1 ja 1 muutub 0. C-keeles on eituse märk "~".
Line 63: Line 59:
 [{{  :images:logic:op_bit_set.png?230|Biti kõrgeks seadmise tehe}}] [{{  :images:logic:op_bit_set.png?230|Biti kõrgeks seadmise tehe}}]
  
-Sellekset üks või enam bitte registris kõrgeks ehk üheks seada, tuleb kasutada loogilist liitmise tehet. Liitmistehte üks operand peab olema register, teine binaararv, kus kõrge on ainult see bitt, mida ka registris soovitakse kõrgeks seada. Seda teist binaararvu nimetatakse ka bitimaskiks. Kõrvalnäites toodud tehe näeb C-keeles välja niimoodi:+Selleks et üks või enam bitte registris kõrgeks ehk üheks seada, tuleb kasutada loogilist liitmise tehet. Liitmistehte üks operand peab olema register, teine binaararv, kus kõrge on ainult see bitt, mida ka registris soovitakse kõrgeks seada. Seda teist binaararvu nimetatakse ka bitimaskiks. Kõrvalnäites toodud tehe näeb C-keeles välja niimoodi:
  
 ~~CL~~ ~~CL~~
Line 122: Line 118:
 [{{  :images:logic:op_bit_get.png?229|Biti lugemise tehe}}] [{{  :images:logic:op_bit_get.png?229|Biti lugemise tehe}}]
  
-Ühe või enam biti väärtuse lugemiseks registrist tuleb kasutada sama tehet, mis biti nullimisel - loogilist korrutamist. Tehte üks operand peab olema register, teine bitimask, kus kõrgeks on seatud vaid see bitt, mille väärtust registrist lugeda soovitakse. Kõrvalnäites toodud tehe näeb C-keeles välja järgmiselt:+Ühe või enama biti väärtuse lugemiseks registrist tuleb kasutada sama tehet, mis biti nullimisel - loogilist korrutamist. Tehte üks operand peab olema register, teine bitimask, kus kõrgeks on seatud vaid see bitt, mille väärtust registrist lugeda soovitakse. Kõrvalnäites toodud tehe näeb C-keeles välja järgmiselt:
  
 ~~CL~~ ~~CL~~
Line 131: Line 127:
   // Siinkohal x = 0x01   // Siinkohal x = 0x01
 </code> </code>
- 
-~~PB~~ 
  
 ==== Biti nihutamine ==== ==== Biti nihutamine ====
  
-Tegelikult on paljudes programmeerimiskeeltes peale binaartehete veel mõned bitioperatsioonid, mis teevad programeerija elu lihtsamaks. Need on bitinihutuse operatsioonid, mis binaararvus nihutavad bittekas vasakule või paremale poole. Nihutusoperatsioonide põhiline väärtus seisneb registritega tegeldes nende võimes bitijärkusid bitimaskiks teisendada ja vastupidi.+Tegelikult on paljudes programmeerimiskeeltes peale binaartehete veel mõned bitioperatsioonid, mis teevad programmeerija elu lihtsamaks. Need on bitinihutuse operatsioonid, mis binaararvus nihutavad bitte kas vasakule või paremale poole. Nihutusoperatsioonide põhiline väärtus seisneb registritega tegeledes nende võimes bitijärkusid bitimaskiks teisendada ja vastupidi.
  
 [{{  :images:logic:op_bit_shift_left.png?241|Bitinihe vasakule}}] [{{  :images:logic:op_bit_shift_left.png?241|Bitinihe vasakule}}]
  
-Kõrvaloleval pildil on toodud näide bitinihutuse operatsioonist vasakule. Bitinihutus pole loogikaoperatsioon ja sel puudub vastav tähis, C-keeles on see aga "<<". Nihet vasakule kasutatakse bitijärgu bitimaskiks teisendamiseks. Näiteks kui soovitakse kuuenda biti (NB! järk on 5) maski, siis tuleb arvu 1 nihutada vasakule 5 korda. Näites toodud operatsioon näeb C-keeles välja järgmiselt:+Kõrvaloleval pildil on toodud näide bitinihutuse operatsioonist vasakule. Bitinihutus pole loogikaoperatsioon ja sel puudub vastav tähis, C-keeles on see aga "<<". Nihet vasakule kasutatakse bitijärgu bitimaskiks teisendamiseks. Näitekskui soovitakse kuuenda biti (NB! järk on 5) maski, siis tuleb arvu 1 nihutada vasakule 5 korda. Näites toodud operatsioon näeb C-keeles välja järgmiselt:
  
 ~~CL~~ ~~CL~~
Line 167: Line 161:
 ===== AVR registrid ===== ===== AVR registrid =====
  
-Selleks et midagi reaalselt mikrokontrolleri registritega teha saaks, tuleb osata selle mikrokontrolleriga läbi saada. Kõigi mikrokontrolleritega käib kaasas üks või mitu andmelehte, kus on dokumenteeritud kogu mikrokontrolleri struktuur ja funktsionaalsus. Andmelehes on kirjeldatud ka registrid. Järgnevalt uurime, kuidas saada aru AVR-i andmelehe registrite kirjeldusest.+Sellekset midagi reaalselt mikrokontrolleri registritega teha saaks, tuleb osata selle mikrokontrolleriga läbi saada. Kõigi mikrokontrolleritega käib kaasas üks või mitu andmelehte, kus on dokumenteeritud kogu mikrokontrolleri struktuur ja funktsionaalsus. Andmelehes on kirjeldatud ka registrid. Järgnevalt uurime, kuidas saada aru AVR-i andmelehe registrite kirjeldusest.
  
 [{{  :images:logic:avr_example_register.png?580  |Üks AVR register selle andmelehest}}] [{{  :images:logic:avr_example_register.png?580  |Üks AVR register selle andmelehest}}]
Line 175: Line 169:
 Registri sisu tähistab paksu piirjoonega 8 lahtriga kast. Iga lahter tähistab üht bitti. Kasti kohal on toodud biti järgud - suurenevad paremalt vasakule. Kuna AVR on 8-bitine mikrokontroller, on ka enamik registreid 8-bitised. Mõningad erandid on 16-bitised registrid, mis koosnevad tegelikult kahest 8-bitisest registrist. Lisaks registritele on nimi ka igal registri bitil - täpselt nagu kassetimängija nuppudelgi. Iga biti kohta on andmelehes olemas selle selgitus. Biti nimed on samuti lühendid ja n-täht neis tuleb samuti asendada mooduli indeksiga. Mõnes registris pole kõiki 8 bitti kasutatud ja sel juhul tähistatakse biti lahter sidekriipsuga. Registri sisu tähistab paksu piirjoonega 8 lahtriga kast. Iga lahter tähistab üht bitti. Kasti kohal on toodud biti järgud - suurenevad paremalt vasakule. Kuna AVR on 8-bitine mikrokontroller, on ka enamik registreid 8-bitised. Mõningad erandid on 16-bitised registrid, mis koosnevad tegelikult kahest 8-bitisest registrist. Lisaks registritele on nimi ka igal registri bitil - täpselt nagu kassetimängija nuppudelgi. Iga biti kohta on andmelehes olemas selle selgitus. Biti nimed on samuti lühendid ja n-täht neis tuleb samuti asendada mooduli indeksiga. Mõnes registris pole kõiki 8 bitti kasutatud ja sel juhul tähistatakse biti lahter sidekriipsuga.
  
-Registri bittide all on toodud kaks rida, kus on kirjas, kas bitt on loetav (R), kirjutatav (W) või mõlemat (R/W). Näiteks olekubitte ei saa üle kirjutada ja isegi kui seda programmis üritada ei omanda bit lihtsalt talle omistatavat väärtust. Biti puhul, mida saab ainult kirjutada, on öeldud üks kindel väärtus, mis selle lugemisel alati tuleb. Bittide all teises reas on toodud vaikeväärtus, mis on bitil pärast mikrokontrolleri käivitamist (inglise keeles //reset//).+Registri bittide all on toodud kaks rida, kus on kirjas, kas bitt on loetav (R), kirjutatav (W) või mõlemat (R/W). Näiteks olekubitte ei saa üle kirjutada ja isegi siis, kui seda programmis üritadaei omanda bitt lihtsalt talle omistatavat väärtust. Biti puhul, mida saab ainult kirjutada, on öeldud üks kindel väärtus, mis selle lugemisel alati tuleb. Bittide all teises reas on toodud vaikeväärtus, mis on bitil pärast mikrokontrolleri käivitamist (inglise keeles //reset//).
  
-Kui AVR-i registrite nimed viitavad tegelikult mälupesade aadressidele, siis biti nimede taga peitub selle biti järgu number. Seega registris bittidega manipuleerimiseks tuleb bitinimed nihutusoperatsiooni abil bitimaskiks teisendada. Järgnevalt on toodud mõned C-keele näited eeltoodud USART 0 mooduli registri kasutamiseks.+Kui AVR-i registrite nimed viitavad tegelikult mälupesade aadressidele, siis biti nimede taga peitub selle biti järgu number. Seega registris bittidega manipuleerimiseks tuleb bitinimed nihutusoperatsiooni abil bitimaskiks teisendada. Järgnevalt on toodud mõned C-keele näitelaused eeltoodud USART 0 mooduli registri kasutamiseks.
  
 <code c> <code c>
Line 188: Line 182:
   // UDRE0 biti(maski) väärtuse lugemine   // UDRE0 biti(maski) väärtuse lugemine
   unsigned char u = (UCSR0A & (1 << UDRE0));   unsigned char u = (UCSR0A & (1 << UDRE0));
- 
   // Siinkohal on u väärtus kas 0 või 32,   // Siinkohal on u väärtus kas 0 või 32,
-  // mis võimaldab seda loogilises avaldises kasutada +</code>
-  if (u) +
-  { +
-     // MPCM0 biti inverteerimine +
-     UCSR0A ^= (1 << MPCM0); +
-  }+
  
-  // Mõnikord on aga vaja saada konkreetne 0 või 1 väärtus, +Atmeli xmega seeria kontrolleritelmis on kasutusel Kodulabori III seeria plaatidel tuleb lisaks moodulile ära märkida ka port, mille moodulit kasutada soovitakse. Lisaks on defineeritud registri bittide maskid ning bittide positsioonid _bm(bit mask) ja _bp(bit position) lõppudega.
-  // selleks tuleb loetud bitti nihutada paremale +
-  u >>= UDRE0;+
  
-  // Siinkohal on u väärtus kas 0 või 1 +<code c> 
-</code>+  // TXEN biti kõrgeks seadmine 
 +  USARTD0.CTRLB |= (USART_TXEN_bm);
  
 +  // CLK2X biti madalaks seadmine
 +  USARTD0.CTRLB &= ~(USART_CLK2X_bm);
 +
 +  // DREIF biti(maski) väärtuse lugemine
 +  unsigned char u = (USARTD0.STATUS & (USART_DREIF_bm));
 +  // Siinkohal on u väärtus kas 0 või 32,
 +  u >>= USART_DREIF_bp;
 +  // Siinkohal on u väärtus kas 0 või 1,
 +</code>
et/avr/registers.1265734735.txt.gz · Last modified: 2020/07/20 09:00 (external edit)
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0