This is an old revision of the document!
A reliable energy source is required to keep an IoT device alive. An interruption is when the energy source shuts down the IoT device, increasing downtime and reducing the quality of service or the quality of experience the users feel. Therefore, choosing the energy source is very important when designing IoT systems. The following factors should be considered when choosing an energy source for an IoT device:
The choice of the energy source is very important in the IoT design process as it will influence the choice of the computing power, communication protocols and technologies, and the security mechanism and other subsystems of the IoT system. The three main energy sources for IoT devices are:
In IoT applications where the hardware devices do not need to be mobile and are energy-hungry (consume a significant amount of energy), they can be reliably powered using main power sources. The main power from the grid is in the form of AC power and should be converted to DC power and scaled down to meet the power requirement of sensing, actuating, computing, and networking nodes. The hardware devices are the networking or transport layer, and those at the application layer (fog/cloud computing nodes) are often power-hungry and are supplied using energy from the grid.
A drawback of using the main power to supply an IoT infrastructure with many IoT devices that depend on the main power source is the complexity of connecting the devices to the power source using cables. In the case of hundreds or thousands of devices, supplying them using the main power is impractical. If the energy from the main source is generated using fossil fuels, then the carbon footprint from the IoT infrastructure increases as its energy demands increase.
Energy storage systems are systems that are used to store energy so that it can be consumed later. It is preferable to power IoT devices using energy storage systems. One scenario is to charge the energy storage system (e.g., battery or supercapacitor) to its full capacity and then deploy the IoT device with the energy storage system as its only energy source. In this case, when all the energy stored in the energy storage system is depleted, the device is shut down, resulting in an undesirable downtime.
The time from when the IoT device is deployed to the instant when all the energy stored in the energy storage system is depleted is called the device's lifetime. Among other factors such as mobility, scalability, and size, lifetime of the device and the energy density, energy capacity, and cycle life of the energy storage system are critical design parameters that should be considered when choosing an energy storage system to use as an energy source for an IoT device. In order to increase the lifetime of an IoT device and to reduce the downtime that results from the depletion of all the energy stored in energy storage systems of IoT devices, energy harvesting systems are sometimes incorporated into IoT devices.
Energy harvesting systems are also an alternative energy source for IoT devices. They capture energy from the environment and convert it to electrical energy to supply IoT devices. Suppose the energy captured is more than the power demand of the IoT device. In that case, the surplus can be stored in energy storage systems when the energy harvesting system cannot produce enough energy to supply the IoT device. A major drawback of energy harvesting is that the amount of energy that can be harvested at any given time depends largely on environmental conditions or the presence of external energy sources, resulting in a fluctuation in the amount of energy harvested over time. Hence, it is important to carefully size the energy harvesting unit and the energy storage system in such a way as to maximise the lifetime of the IoT device.
The kind of energy harvesting system to be deployed depends on the available energy sources (e.g., light, radio frequency, heat, vibration, wind, etc.). The amount of energy produced by most IoT energy harvesting systems is minimal compared to the energy needs of the devices. Some of the factors that influence the choice of the energy harvesting system are the availability of the energy sources, the size of the device, the energy needs of the device, and the energy density of the energy source. In a scenario where one energy source can produce sufficient energy, more than one energy harvesting system can be deployed (hybrid energy harvesting sources).