Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
en:safeav:softsys:autonomysoftstack [2025/10/17 11:58] agrisniken:safeav:softsys:autonomysoftstack [2025/10/17 12:04] (current) agrisnik
Line 73: Line 73:
   * Data collection for machine learning retraining.   * Data collection for machine learning retraining.
 Frameworks like AWS RoboMaker, NVIDIA DRIVE Sim, and Microsoft AirSim bridge onboard autonomy with cloud computation. Frameworks like AWS RoboMaker, NVIDIA DRIVE Sim, and Microsoft AirSim bridge onboard autonomy with cloud computation.
 +
 +===== Data Flow in the Autonomy Software Stack =====
 +
 +Autonomy systems rely on data pipelines that move information between layers in real time.
 +
 +<figure Data Flow in an Autonomy Software Stack  >
 +{{ :en:safeav:as:as:rtu_ch3_figure2.png?400| Data Flow in an Autonomy Software Stack }}
 +<caption>Data Flow in an Autonomy Software Stack</caption>
 +</figure>
 +
 +Each stage includes feedback loops to ensure error correction and safety monitoring ((Thrun, S. (2010). Toward robotic cars. Communications of the ACM, 53(4), 99–106)) ((Raj, A., & Saxena, P. (2022). Software architectures for autonomous vehicle development: Trends and challenges. IEEE Access, 10, 54321–54345)).
 +
 +===== Example Implementations =====
 +
 +**ROS 2-Based Stack (Research and Prototyping)**
 +  * Used in academic and industrial R&D.
 +  * Flexible and modular, ideal for simulation and experimental platforms.
 +  * Integration with Gazebo, RViz, and DDS middleware.
 +
 +**AUTOSAR Adaptive Platform (Automotive)**
 +  * Industry-grade framework for production vehicles.
 +  * Service-oriented architecture with real-time OS and safety mechanisms.
 +  * Supports ISO 26262 compliance and multi-core systems.
 +
 +**MOOS-IvP (Marine Autonomy)**
 +  * Middleware focused on marine robotics.
 +  * Behaviour-based architecture with mission planning (IvP Helm).
 +  * Optimised for low-bandwidth communication and robustness ((Benjamin, M. R., Curcio, J. A., & Leonard, J. J. (2012). MOOS-IvP autonomy software for marine robots. Journal of Field Robotics, 29(6), 821–835)).
 +
 +**Hybrid Cloud-Edge Architectures**
 +  * Combine onboard autonomy with cloud processing (for model training or high-level optimisation).
 +  * Used in large-scale fleet operations (e.g., logistics robots, aerial mapping).
 +  * Requires secure communication channels and data orchestration ((Wang, L., Xu, X., & Nee, A. Y. C. (2022). Digital twin-enabled integration in manufacturing. CIRP Annals, 71(1), 105–128)).
 +
 +===== Layer Interaction Example – Autonomous Vehicle =====
 +
 +<figure Simplified Interaction Example  >
 +{{ :en:safeav:as:as:rtu_ch3_figure3.png?400| Simplified Interaction Example }}
 +<caption>Simplified Interaction Example</caption>
 +</figure>
 +
 +This closed-loop data exchange ensures real-time responsiveness, robust error recovery, and cross-module coherence.
 +
  
  
  
  
en/safeav/softsys/autonomysoftstack.1760702330.txt.gz · Last modified: 2025/10/17 11:58 by agrisnik
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0