Both sides previous revisionPrevious revisionNext revision | Previous revision |
en:examples:timer:periodic_interrupt [2010/02/08 12:48] – mikk.leini | en:examples:timer:periodic_interrupt [2020/07/20 09:00] (current) – external edit 127.0.0.1 |
---|
====== Perioodiline katkestus ====== | ====== Periodic interrupt ====== |
| |
//Vajalikud teadmised: [HW] [[en:hardware:homelab:controller]], [HW] [[en:hardware:homelab:digi]], [AVR] [[en:avr:interrupts]], [AVR] [[en:avr:timers]], [LIB] [[en:software:homelab:library:pin]], [LIB] [[en:software:homelab:library:delay]], [LIB] [[en:software:homelab:library:timer]], [PRT] [[en:examples:timer:software_delay]]// | //Necessary knowledge: |
| [HW] [[en:hardware:homelab:digi]], |
| [AVR] [[en:avr:interrupts]], [AVR] [[en:avr:timers]], \\ |
| [LIB] [[en:software:homelab:library:pin]], |
| [LIB] [[en:software:homelab:library:timer]]// |
| |
===== Teooria ===== | ===== Theory ===== |
| |
Käesoleva praktilise harjutuse eesmärk on demonstreerida katkestuste kasutamist loendurite näitel. Katkestused on mikrokontrolleris esinevatele sündmustele reageerivad programmilõigud. Katkestusi kasutatakse tavaliselt kiiresti sündmusele reageerimiseks, kuid neid võib kasutada ka mitme paralleelse protsessi täitmiseks, täpselt ajastatud tegevuseks ning voolu säästmiseks. Näiteks on katkestuste abil võimalik panna vilkuma LED, mille vilkumise sagedus ei sõltu sellest, mis programmis parasjagu toimub. | The goal of this chapter is to demonstrate the usage of the interrupts on the example of the counters. The interrupts are program parts which are reacting to the events taking place in the microcontrollers. They are usually used for quick response to an event, but they can also be used for completing several parallel processes, precisely timed action and saving power. For example, it is possible to make a LED blinking using interruptions, so that blinking frequency does not depend on what is happening in the program at the moment. When the interrupt occur then main program execution stopped and the interrupt priority check of the interrupt vector table happen, after that the program of the interrupt function has been executed. While the interrupt program will be executed then the main program execution continues on the state where it left off. |
| |
===== Praktika ===== | ===== Practice ===== |
| |
Järgnev programm näitab, kuidas seadistada loendurit katkestust tekitama. Programmis on kasutusel 2 digitaalse mooduli LED-i, millest punase olekut muudetakse perioodiliselt tarkvaralise viitega ja roheline, mille olekut muudetakse katkestuse tekkimisel. Tarkvaralise viitega LED-i vilgutamise kohta on olemas eraldi harjutus ja seda siinkohal selgitatud pole. Põhieesmärk on selgitada loendurite teegi ja katkestuste kasutamist. | The following program shows how the counter is set up to make an interrupt. There are 2 LEDs of the Digital i/o module in the program, the state of the red LED is changed periodically with software delay, the state of the green LED is changed when interrupts occur. There is a separate exercise for blinking LED with software delay and it is not explained here. The main goal is to explain the usage of the library of the counters and interrupts. |
| |
Programmi alguses toimub 16-bitise loendur/taimer 1 seadistamine funktsiooniga //timer1_init_ctc//. Selle funktsiooni abil seatakse loendur CTC (inglise keeles //clear timer on compare match//) režiimi, kus taimeri maksimaalseks väärtuseks pole mitte 2<sup>16</sup> - 1, vaid see on valitav. Antud juhul määratakse maksimaalseks väärtuseks ICR1 registri väärtus. Loenduri jaguriks on 1024 ja ICR1 väärtuseks 14400, mille tulemusena 14,7456 Mhz taktsageduse puhul on loenduri perioodiks täpselt 1 sekund. Seda on lihtne arvutada valemist: | The following shows the use of interrupts of the xmega controller. In the beginning of the program, the 16-bit counter/timer E1 has been set up. First, the timer period will be set, so the maximum value of the count function TC_SetPeriod. The divider of the counter is 1024 and the value of period is 31249, so when the clock frequency is 32 MHz, the period will be exactly one second. It is easy to calculate with following formula: |
| |
f = 14745600 Hz / 1024 / 14400 = 1 | period = (32000000 Hz / 1024 / 1) - 1 = 31249 |
| |
Pärast loendur 1 maksimaalse väärtuse saavutamise katkestuse lubamist tuleb katkestuse tekkimine lubada ka globaalselt, ehk siis üle kogu mikrokontrolleri. Globaalseks katkestuste lubamiseks on funktsioon //sei// ja keelamiseks //cli//. Nende funktsioonide ja katkestuste programmilõigu defineerimiseks peab programmi kaasama ka //avr/interrupt.h// päisefaili. Katkestuse programmilõik defineeritakse makrofunktsiooniga //ISR//, mille parameetriks on katkestuse vektori nimi. Loendur 1 väärtuse saavutamise katkestuse vektori nimi on //TIMER1_CAPT_vect//. | After allowing the interrupt to achieve the maximum value of the counter 1, an interrupt must be allowed at the global level, which means over the entire microcontroller. The global interrupts can be enabled by function sei and forbidding with cli. A header file avr/interrupt.h must be included for defining the program part of these functions and interrupts. The program part of the interrupt is defined with macro function ISR, which parameter is the name of the interrupt vector. In this set-up the vector of counter 1’s maximum value achievement interrupt is TCE1_OVF_vect. In addition, to allow the global interrupt, a different priority interrupts should be enabled one by one, using the xmega PMIC.CTRL register. |
| |
<code c> | <code c> |
// | // HomeLab III example of blinking LED with counter interrupt |
// Kodulabori loenduri katkestusega vilkuva LED näide. | |
// Võrdluseks katkestusega vilkuvale LED-ile | |
// töötab paralleelselt ka tarkvaralise viitega vilkuv LED. | |
// | |
#include <homelab/pin.h> | #include <homelab/pin.h> |
#include <homelab/delay.h> | #include <homelab/delay.h> |
#include <avr/interrupt.h> | #include <avr/interrupt.h> |
| |
// | // Interruption |
// LED-ide viikude määramine | ISR(TCE1_OVF_vect) |
// | { |
pin led_red = PIN(C, 5); | // Changing the state of the green LED |
pin led_green = PIN(C, 3); | pin_toggle(led_green); |
| } |
| |
| // Main program |
| int main(void) |
| { |
| // Setting the pins of the LEDs as outputs |
| pin_setup_output(led_green); |
| |
| // Setting the period of timer E1 |
| // F_CPU/1024/[aeg] - 1 = periood |
| // 32000000 / 1024 / 1 - 1 = 31249 |
| TC_SetPeriod(&TCE1, 31249); |
| |
| // Setting the clock of timer E1 (F_CPU/1024) |
| TC1_ConfigClockSource(&TCE1, TC_CLKSEL_DIV1024_gc); |
| // Setting timer E1 to the normal operating mode |
| TC1_ConfigWGM(&TCE1, TC_WGMODE_NORMAL_gc); |
| |
| // Enabling high-priority overflow interruptions |
| TC1_SetOverflowIntLevel(&TCE1,TC_OVFINTLVL_HI_gc); |
| |
| // Enabling high-priority interruptions |
| PMIC.CTRL |= PMIC_HILVLEN_bm; |
| // Enabling global interruption |
| sei(); |
| |
| // Endless loop |
| while (1) { } |
| } |
| </code> |
| |
| |
| Example of interrupt is quite different between ATmega series (in this example ATmega2561) controllers, because the timers, compared to the xmega series controllers, are also different. |
| |
| In the beginning of the program, the 16-bit counter/timer 1 has been set up with the function //timer1_init_ctc//. With this function the counter CTC //clear timer on compare match// has been set to the mode where the maximum value of the timer is not 2<sup>16</sup> - 1 but can be selected. In this case the maximum value is set to equal the value of the ICR1 index. The divider of the counter is 1024 and the value of ICR1 is 14400, so when the clock frequency is 14,7456 MHz, the period will be exactly one second. It is easy to calculate with following formula: |
| |
| f = 14745600 Hz / 1024 / 14400 = 1 |
| |
| <code c> |
| // The HomeLab II example of blinking LED with counter interrupt |
| #include <homelab/pin.h> |
| #include <homelab/delay.h> |
| #include <homelab/timer.h> |
| #include <avr/interrupt.h> |
| |
// | // Interruption |
// Katkestus | |
// | |
ISR(TIMER1_CAPT_vect) | ISR(TIMER1_CAPT_vect) |
{ | { |
// Rohelise LED oleku muutmine | // Changing the state of the green LED |
pin_toggle(led_green); | pin_toggle(led_green); |
} | } |
| |
// | // Main program |
// Põhiprogramm | |
// | |
int main(void) | int main(void) |
{ | { |
// LED-ide viikude väljundiks seadmine | // Setting the pins of the LEDs as outputs |
pin_setup_output(led_red); | |
pin_setup_output(led_green); | pin_setup_output(led_green); |
| |
// Taimeri seadistamine CTC režiimi | // Seting the timer up in the CTC mode |
timer1_init_ctc( | timer1_init_ctc( |
TIMER1_PRESCALE_1024, | TIMER1_PRESCALE_1024, |
TIMER1_CTC_TOP_ICR); | TIMER1_CTC_TOP_ICR); |
| |
// Taimeri maksimaalne väärtus 14400 mis | // The maximal value of the timer is 14400, which |
// teeb perioodi pikkuseks 1s | // makes the length of the period 1 s |
// Valem: 14,7456Mhz / 1024 = 14400 | // Formula: 14,7456Mhz / 1024 = 14400 |
timer1_set_input_capture_value(14400); | timer1_set_input_capture_value(14400); |
| |
// Väärtuse saavutamise katkestuse lubamine | // Allowing interruption of achieving the value |
timer1_input_capture_interrupt_enable(true); | timer1_input_capture_interrupt_enable(true); |
| |
// Globaalne katkestuste lubamine | // Allowing global interruption |
sei(); | sei(); |
| |
// Lõputu tsükkel | // Endless loop |
while (true) | while (1){ } |
{ | |
// Tarkvaraline paus 1000 millisekundit | |
sw_delay_ms(1000); | |
| |
// Punase LED oleku muutmine | |
pin_toggle(led_red); | |
} | |
} | } |
</code> | </code> |
| |
Programmi käivitades on näha, et hoolimata sellest, mida mikrokontroller põhiprogrammis teeb, toimuvad katkestused ja roheline LED vilgub. | At the start of the program it is seen that regardless of what the microcontroller is doing in the main program, the interrupts are taking place and the green LED is blinking. |
| |
Kui programmil lasta töötada mõni minut, tuleb välja oluline aspekt, mida tarkvaralise viite harjutuses nii lihtsalt näha polnud. Kuigi punast LEDi vilgutavas tsüklis olev viide on 1000 ms, siis tegelik aeg, mis kulub iga tsükli täitmiseks, on natukese suurem. Põhjus on selles, et ka LED-i oleku muutmine, viite funktsiooni väljakutsumine ja tsükli täitmine võtavad protsessoril mõned taktid täitmise aega. Tulemusena jääb punase LED-i vilkumine rohelise LED-i vilkumisest pidevalt maha. Just sel põhjusel ei ole soovitatav ka kellaaja loendureid ja muid täpselt ajastatud tegevusi teha viitega, vaid loenduri katkestustega. | |