Both sides previous revisionPrevious revisionNext revision | Previous revision |
en:avr:architecture [2010/02/28 14:32] – mikk.leini | en:avr:architecture [2020/07/20 09:00] (current) – external edit 127.0.0.1 |
---|
====== Architecture ====== | ====== Architecture ====== |
| |
AVR-il on sisemine 8-bitine andmesiin, mille kaudu liiguvad andmed arvutusüksuse (ALU), olekuregistri (SREG), programmiloenduri (PC), muutmälu (SRAM) ja perifeeria vahel. ALU-s täitmisele minev programm ehk instruktsioonide jada tuleb välkmälu aadressilt, mille määrab programmiloendur. ALU juurde kuuluvad 32 üldkasutatavat 8-bitist registrit, mida kasutatakse paljude instruktsioonide täitmisel operandidena. | AVR has an internal 8-bit data bus, through which the data is moved between the arithmetic logic unit (ALU), status register (SREG), program counter (PC), random access memory (SRAM) and peripherals. The program, an array of commands that is executed in the ALU, comes from an address in the flash memory, specified by the program counter. The ALU has 32 8-bit general purpose registers, which are used as operands when carrying out instructions. |
| |
[{{ :images:avr:avr_atmega128_block_diagram.png?580 |ATmega128 struktuur}}] | [{{ :images:avr:avr_atmega128_block_diagram.png?580 |Block diagram of ATmega128}}] |
| |
===== Käsukonveier ===== | ===== Instruction Pipeline ===== |
| |
AVR-i käsukonveier on kaheastmeline. Samal ajal kui üht instruktsiooni täidetakse, laetakse järgmine instruktsioon programmimälust ootele. See on ka põhjus, miks siirdekäskude täitmine võtab 2 takti siirdetingimuse täitumisel. Kuna uus instruktsioon laetakse käsukonveierisse alati järgmiselt mäluaadressilt, siis siiretel muule programmiaadressile tuleb eelnevalt laetud instruktsioon minema visata ja uus laadida, sest see oli vanast ehk siis valest kohast laetud. | AVR has a two-stage instruction pipeline. While one instruction is executed, the next is fetched from the program memory. This is why carrying out jump instructions takes 2 cycles on fulfillment of the jump condition. Since the new instruction is always fetched from the next memory address, it is necessary to discard the previously fetched instruction and fetch a new one when jumping to another address, because it was taken from an old, wrong location. |
| |
===== Üldkasutatavad registrid ===== | ===== General Purpose Registers ===== |
| |
Üldkasutatavad registrid R0-R31 on justkui vahepuhvrid mälu ja perifeeria andmete hoidmiseks ning nendega toimetamiseks. Üldkasutatavad registrid lihtsustavad protsessori arhitektuuri, kuna ALU jaoks on need kiirelt kättesaadavad ja igal arvutusel ei pea operandide mälust lugemiseks kasutama andmesiini. Üldkasutatavaid registreid kasutatakse kõikide andmetega seotud aritmeetiliste ja loogiliste operatsioonide tegemiseks. | General purpose registers R0-R31 are like buffers for storing and operating with memory and peripheral data. They simplify the architecture of the processor, because they are quickly accessible by the ALU, and the use of the data bus to read operands from the memory is not necessary for every operation. General purpose registers are used for performing all data-related arithmetical and logical operations. |
| |
Assemblerkeeles programmeerides võib kiiret töötlust vajavaid andmeid üldkasutatavates registrites hoida. Kui programmeeritakse C-keeles ja on kindel soov muutuja hoidmiseks üldkasutatavat registrit kasutada, defineeritakse muutuja täiendavalt "register" tüüpi. Näiteks: | While programming in assembler, it is possible to store the urgent data in general purpose registers. While programming in C and a need to store a variable in a general purpose register arises, the variable is additionally defined as "register". |
| For example: |
| |
<code c> | <code c> |
</code> | </code> |
| |
===== Käsustik ===== | ===== Instruction Set ===== |
| |
Enamiku AVR-ide käsustik koosneb 90-133 erinevast instruktsioonist. ATmega128-l on 133 instruktsiooni. Instruktsioonid on kas ühe, kahe või üldse ilma operandideta. Enamik instruktsioone täidab mikrokontrolleri protsessor ühe takti jooksul, kuid keerukamad kulutavad kuni 5 takti. AVR-i järeltulija XMega puhul on mitmeid instruktsioone täiendatud nii, et need kulutavad vähem takte. Suurem osa AVR-i instruktsioonidest on siireteks, andmete liigutamiseks, võrdlusteks ja loogilisteks ning aritmeetilisteks teheteks. Tehete ja võrdluste puhul on kasutusel olekuregister, kus märgitakse vastavate bittidena ära juhud, kui tehte tulemus ALU-s oli: negatiivne või positiivne, null, ületas maksimaalse võimaliku väärtuse (8-bitti), vajas biti ülekandmist järgmisesse tehtesse, ja veel paaril keerukamal juhul. | The instruction set of most AVRs consists of 90-133 different instructions. ATmega128 has 133 instructions. Instructions have either one, two or no operands. Most instructions take only one cycle to complete, but the more complex ones can use up to 5 cycles. For XMega, the successor of AVR, several instructions have been modified to use less cycles. Most instructions in AVR are used for jumps, moving and comparing data and executing arithmetic calculations. A status register is used for performing calculations and comparisons. It stores the output status of the ALU - whether the result was negative, positive, zero, exceeded the maximum allowed value (8 bits), needed to transfer a bit to the next operation etc (there are a few more complex cases). |
| |
<box 100% round #EEEEEE|Näide> | <box 100% round #EEEEEE|Example> |
| |
Toodud on Assembleris ehk puhtalt instruktsioonidena kirjutatud kood, mis liidab muutmälus aadressil $100 (detsimaalarvuna 256) asuvale baidile juurde arvu 5. Kasutatud käsud on olemas kõigil AVR-idel. | This is a piece of code written in Assembler and consists of pure instructions, which adds 5 to the byte at random access memory address $100 (decimal 256). These instructions exist in all AVRs. |
| |
<code asm> | <code asm> |
ldi r1, 5 ; Konstandi 5 laadimine üldkasutatavasse registrisse r1 | ldi r1, 5 ; Load the constant 5 to general purpose register r1 |
lds r2, $100 ; Baidi laadimine muutmälust registrisse r2 | lds r2, $100 ; Load the byte from the memory to register r2 |
add r2, r1 ; Registrile r2 registri r1 väärtuse liitmine | add r2, r1 ; Add the value of r1 to r2 |
sts $100, r2 ; Registri r2 väärtuse kirjutamine tagasi muutmällu | sts $100, r2 ; Write the value of r2 back to the memory |
</code> | </code> |
| |
</box> | </box> |
| |
===== Programmi pinumälu ===== | ===== Program Stack ===== |
| |
Pinumälu (inglise keeles //stack//) on andmete ülesehitus, kus viimasena mällu kirjutatud andmed loetakse välja esimesena. AVR-is saab pinumälu kasutada alamfunktsioonide, katkestuste ja ajutiste andmete juures. Alamfunktsioonide ja katkestuste täitmisel lisatakse eelnevalt pinumällu programmiloenduri aadress, mille pealt programm katkes. Kui alamfunktsioon või katkestus on töö lõpetanud, loetakse pinumälust aadress, kust programmi tööd jätkata. Ajutisi andmeid lisatakse pinumällu tavaliselt lühemate programmilõikude juures, mis ei vaja mälu reserveerimist kogu programmi ajaks. Lihtsamad assemblerkeele programmid on kirjutatud üldjuhul nii, et pinumälu kasutama ei pea, kuid selle võtavad kasutusele kompilaatorid, kui programmis on palju muutujaid ning funktsioone. | Stack is a data structure, where the last data written to the memory is read out first. AVR's stack can be used while operating with subroutines, interrupts and temporary data. Before executing a subroutine or interrupt, the address in the program counter where the program was interrupted is stored in the stack. When the subroutine or interrupt has finished its execution, this address is read back from the stack and the program continues from the address it left off from before. Storing temporary data in the stack is usually used when dealing with shorter chunks of code, which do not require reserved memory throughout the execution of the program. Simpler assembler programs are usually written so that it is not necessary to use the stack, but if the program contains a lot of variables and functions, the compilers automatically make use of it. |
| |
MegaAVR seeria mikrokontrolleritel on pinumälu füüsiline asukoht muutmälus, kuid mõnel tinyAVR seerial muutmälu üldse puudub ja pinumälu tarbeks on spetsiaalne üsna piiratud mahuga mälu. Sellistele, ilma muutmäluta mikrokontrolleritele kompilaatoreid üldjuhul pole. | The stack of MegaAVR series microcontrollers is physically located in the random access memory. Some tinyAVR series devices do not have a random access memory at all and the stack is realized as a separate, quite limited memory unit. Typically there are no compilers for devices with no random access memory. |
| |
Kõrgtaseme keeles (Pascal, C, C++) programmeerides ei pea otseselt mikrokontrolleri siseeluga kursis olema, sest kompilaator valib ise vastavalt vajadusele üldkasutavaid registreid ja instruktsioone, kuid see teadmine tuleb kasuks. Mikrokontrolleri instruktsioone on oluline tunda ajakriitilistes rakendustes, kus protseduurid peavad toimuma loetud protsessori taktide jooksul. | |
| |
| To program in a high level language (Pascal, C, C++), it is not necessary to be familiar with the inner workings of the microcontroller, because the compiler is capable of selecting general purpose registers and instructions by itself, but knowing what goes on in the controller is certainly beneficial. It is necessary to know the instructions of the microcontroller when developing time-critical applications, where the operations have to be completed in a limited amount of cycles. |