Controller module ATmega2561 v1.x

The main module of the HomeLab is a controller development board (controller board) equipped with the AVR ATmega2561 microcontroller. In addition to the microcontroller, the board consists of several peripherals, voltage stabilizer, connectors, JTAG programmer, Ethernet, SD memory card slot. The controller board has the following features:

  • ATmega2561-16AU microcontroller
    • 8-channel 10-bit A/D converter
    • 256 kB Flash memory (program memory)
    • 4kB EEPROM memory (data memory)
    • 6 channel programmable PWM
  • Integrated JTAG programmer (based on FTDI2232)
  • 14,7456 MHz clock
  • Ethernet module with RJ45 connector
  • SD memory card slot
  • Status LED (PB7)and Power LED
  • Programmable button (PC2) and reset button
  • All Atmega signals available on three connectors (1: ports D, B, E; 2: ports G, C, A; 3: port F with ADC I/O lines)
  • 2,1 mm power socket
  • Automatic power switch USB or external power supply
  • Built-in voltage stabilizer, with 5 V and 3,3 V output
Controller module

The module is equipped with a AC/DC rectifier circuit and a LDO voltage stabilizer (with low dropout) -an external feeder with voltage stabilization is not needed. The module can be powered with a step down transformer with an output voltage which is greater than 6 volts and lower than 15 volts. In order to reduce power losses it is recommended to use power supply between 6-9V. The POWER LED signalizes a connected feed (“POWER” description on the board). All ATmega2561 signals are available on three connectors on the edge of the board. Connectors pin assignment is described in the next part of this instruction. It includes full descriptions of ATmega2561 pins and their alternative functions. The module is equipped with a microprocessor reset circuit (when power on) and a reset button for a microprocessor restart. A microprocessor can be programmed with an on-board JTAG programmer over USB or with an ISP interface. To the seventh pin of port B (named as PB7) the status LED (described as PB7 on the board) is connected. This LED can be used as a status indicator of application software. Low state on PB7 pin causes the status LED to be lit. The module is equipped with SD memory card slot, where it can be used as a standard microSD memory card. The memory card is connected to the microcontroller via the ISP interface and can be used to store data where data must be maintained even if the power supply is removed.

Components on the Controller board

Connector Pins and Functions

NrPinAlternative function / Description
1VCC- +5 V
2GND- GND
3REFAREFAnalog Reference Voltage For ADC
4GND- GND
5PF0ADC0ADC Input Channel 0
6GND-GND
7PF1ADC1ADC Input Channel 1
8GND-GND
9PF2ADC2ADC Input Channel 2
10GND-GND
11PF3ADC3ADC Input Channel 3
12GND-GND

 

NrPinAlternative function / Description
1 PD7T2 Timer/Counter2 Clock Input
2 PD6T1 Timer/Counter1 Clock Input
3 PD5XCK1 USART1 External Clock Input/Output
4 PD4IC1 Timer/Counter1 Input Capture Trigger
5 PD3INT3/TXD1 External Interrupt3 Input or UART1 Transmit Pin
6 PD2INT2/RXD1 External Interrupt2 Input or UART1 Receive Pin
7 PD1INT1/SDA External Interrupt1 Input or TWI Serial Data
8 PD0INT0/SCL External Interrupt0 Input or TWI Serial Clock
9 VCC- +5V
10GND- GND
11PB7OC0A/OC1C/PCINT7Output Compare and PWM Output A for Timer/Counter0, Output Compare and PWM Output C for Timer/Counter1 or Pin Change Interrupt 7
12PB6OC1B/PCINT6Output Compare and PWM Output B for Timer/Counter1 or Pin Change Interrupt 6
13PB5OC1A/PCINT5Output Compare and PWM Output A for Timer/Counter1 or Pin Change Interrupt 5
14PB4OC2A/PCINT4Output Compare and PWM Output A for Timer/Counter2 or Pin Change Interrupt 4
15PB3MISO/PCINT3SPI Bus Master Input/Slave Output or Pin Change Interrupt 3
16PB2MOSI/PCINT2SPI Bus Master Output/Slave Input or Pin Change Interrupt 2
17PB1SCK/PCINT1SPI Bus Serial Clock or Pin Change Interrupt 1
18PB0SS/PCINT0SPI Slave Select input or Pin Change Interrupt 0
19PE7INT7/IC3/CLK0 External Interrupt 7 Input, Timer/Counter3 Input Capture Trigger or Divided System Clock
20PE6INT6/T3 External Interrupt 6 Input or Timer/Counter3 Clock Input
21PE5INT5/OC3CExternal Interrupt 5 Input or Output Compare and PWM Output C for Timer/Counter3
22PE4INT4/OC3BExternal Interrupt4 Input or Output Compare and PWM Output B for Timer/Counter3
23PE3AIN1/OC3AAnalog Comparator Negative Input or Output Compare and PWM Output A for Timer/Counter3
24PE2AIN0/XCK0Analog Comparator Positive Input or USART0 external clock input/output
25PE1PDO/TXD0 ISP Programming Interface Data Output or USART0 Transmit Pin
26PE0PDI/RXD0/INT8 ISP Programming Interface Data Input, USART0 Receive Pin or Pin Change Interrupt 8

NrPinAlternative function / Description
1 GND- Gnd
2 VCC- +5 V
3 PA0AD0External memory interface address and data bit 0
4 PA1AD1External memory interface address and data bit 1
5 PA2AD2External memory interface address and data bit 2
6 PA3AD3External memory interface address and data bit 3
7 PA4AD4External memory interface address and data bit 4
8 PA5AD5External memory interface address and data bit 5
9 PA6AD6External memory interface address and data bit 6
10PA7AD7External memory interface address and data bit 7
11PG4TOSC1RTC Oscillator Timer/Counter2
12PG5OC0BOutput Compare and PWM Output B for Timer/Counter0
13PG2ALEAddress Latch Enable to external memory
14PG3TOSC2RTC Oscillator Timer/Counter2
15PC6A14External Memory interface address bit 14
16PC7A15External Memory interface address bit 15
17PC4A12External Memory interface address bit 12
18PC5A13External Memory interface address bit 13
19PC2A10External Memory interface address bit 10
20PC3A11External Memory interface address bit 11
21PC0A8 External Memory interface address bit 8
22PC1A9 External Memory interface address bit 9
23PG0WR Write strobe to external memory
24PG1RD Read strobe to external memory
25GND- GND
263V3- +3,3 V

 

Connecting

When connecting the controller module with other modules or devices, you must first make sure that the controller module power supply is not connected. Modules and devices must be connected to each other with care. It is important not to use excessive force, wrong handling may damage the module. For programming and to power with low currency (less than 500mA) you must only connect the controller module with a PC using an USB port. If you are using modules that need to use a greater current than 500 mA, you must use a separate power source. If a controller module is connected to a separate power source, then the module automatically does not use USB a power supply.

Controller module connected to power supply and programmer
en/hardware/homelab/controller/atmega2561.txt · Last modified: 2020/07/20 09:00 by 127.0.0.1
CC Attribution-Share Alike 4.0 International
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0