

Table of Contents
1. Introduction .. 7
1.1. Definition of IoT .. 8
1.2. Enabling Technologies .. 11
1.3. Mobility – New Paradigm for IoT Systems ... 13
1.4. Data Management Aspects in IoT ... 17
1.5. IoT Application Domains ... 19

2. Introduction to the IoT Microcontrollers .. 25
3. Introduction to Embedded Programming .. 27
3.1. IoT and Embedded Systems Programming Models ... 28
3.2. Introduction to the Programming Frameworks.. 33
3.3. Software Development Tools and Platforms.. 37
3.4. C/C++ Language Embedded Programming Fundamentals............................... 42
3.5. Programming with the Use of Scripts.. 81

4. Embedded Communication... 138
4.1. PWM.. 141
4.2. SPI .. 145
4.3. TWI (I2C)... 148
4.4. 1-Wire ... 151
4.5. UART... 154

5. IoT Hardware Overview... 156
5.1. Most Noticeable Platforms .. 157
5.2. Sensors and Sensing .. 255
5.3. Actuators and Output Devices .. 291
5.4. Powering of the IoT Devices.. 313

6. Introduction to the IoT Communication and Networking....................................... 337
6.1. Communication Stack... 339
6.2. Communication Models .. 342
6.3. Media Layers - Wired Network Protocols... 347
6.4. Media Layers - Wireless Network Protocols... 349
6.5. Application Protocols .. 360

7. Programming for IoT Networking .. 371
7.1. Networking for Espressif ... 373
7.2. Networking in Python ... 390

8. IoT Frameworks and Firmware .. 394
9. Notes for Further Studying.. 397

2

Authors
IOT-OPEN.EU Reloaded Consortium partners proudly present the 2nd edition of the
Introduction to the IoT book. The complete list of contributors is listed below.

ITT Group

▪ Raivo Sell, Ph. D., ING-PAED IGIP
▪ Rim Puks, Eng.
▪ Mallor Kingsepp, Eng.

Riga Technical University

▪ Agris Nikitenko, Ph. D., Eng.
▪ Karlis Berkolds, M. sc., Eng.
▪ Anete Vagale, M. sc., Eng.
▪ Rudolfs Rumba, M. sc., Eng.

Silesian University of Technology

▪ Piotr Czekalski, Ph. D., Eng.
▪ Krzysztof Tokarz, Ph. D., Eng.
▪ Godlove Suila Kuaban, Ph. D., Eng.
▪ Oleg Antemijczuk, M. sc., Eng.
▪ Jarosław Paduch, M. sc., Eng.

Tallinn University of Technology

▪ Raivo Sell, Ph. D., ING-PAED IGIP
▪ Karl Läll, B. sc., Eng.

SIA RobotNest

▪ Karlis Berkolds, M. sc., Eng.

IT Silesia

▪ Łukasz Lipka, M. sc., Eng.

University of Messina

▪ Salvatore Distefano
▪ Rustem Dautov
▪ Riccardo Di Pietro
▪ Antonino Longo Minnolo

3

ITMO University

▪ Aleksandr Kapitonov, Ph. D., Assoc. Prof.
▪ Dmitrii Dobriborsci, M. sc., Eng.
▪ Igor Pantiukhin, M. sc., Eng.
▪ Valerii Chernov, Eng.

Graphic Design and Images

▪ Blanka Czekalska, M. sc., Eng., Arch.
▪ Piotr Czekalski, Ph. D., Eng.

Technical Correction

▪ Eryk Czekalski

Reviewers (1st edition)

▪ Fabio Bonsignorio, Ph. D., Eng.– Professor at Scuola Superiore Sant'Anna, Institute of
Biorobotics

▪ Artur Pollak, M. sc., Eng. – CEO at APAGroup
▪ Ivars Parkovs, M. sc., Eng. – R&D Senior Engineer at “SAF Tehnika” Ltd.
▪ Janis Lacaunieks, M. sc., Eng. – R&D Engineer at “SAF Tehnika” Ltd.

4

Preface
This book and its offshoots were prepared to provide comprehensive information about
the Internet of Things on the engineering level.
Its goal is to introduce IoT to bachelor students, master students, technology enthusiasts
and engineers willing to extend their current knowledge with the latest hardware and
software achievements in the scope of the Internet of Things.
This book is also designated for teachers and educators willing to prepare a course on
IoT.

We (Authors) assume that persons willing to study this content possess some general
knowledge about IT technology, e.g. understand what an embedded system is, know the
general idea of programming (in C/C++) and are aware of wired and wireless networking
as it exists nowadays.

This book constitutes a comprehensive manual for IoT technology; however, it is not a
complete encyclopedia nor exhausts the market. The reason for it is pretty simple – IoT
is so rapidly changing technology that new devices, ideas and implementations appear
daily. Once you read this book, you can quickly move over the IoT environment and
market, easily chasing ideas and implementing your IoT infrastructure.

We also believe this book will help adults who took their technical education some time
ago to update their knowledge.

We hope this book will let you find brilliant ideas in your professional life, see a new
hobby, or even start an innovative business.

Playing with real or virtual hardware and software is always fun, so keep going!

5

Project Information
This Book was implemented under the following projects:

▪ Strategic Partnerships in the Field of Education, Training, and Youth – Higher
Education, 2016, IOT-OPEN.EU – Innovative Open Education on IoT: Improving Higher
Education for European Digital Global Competitiveness, project number:
2016-1-PL01-KA203-026471,

▪ Cooperation Partnerships in higher education, 2022, IOT-OPEN.EU Reloaded:
Education-based strengthening of the European universities, companies and labour
force in the global IoT market, project number: 2022-1-PL01-KA220-HED-000085090,

▪ Horizon 2020 Research Innovation and Staff Exchange Programme (RISE) under the
Marie Skłodowska-Curie Action, Programme H2020-EU.1.3.3. - Stimulating innovation
by means of cross-fertilisation of knowledge, Grant Agreement No 871163: Reactive
Too - Reliable Electronics for Tomorrow’s Active Systems.

▪ International project co-financed by the program of the Minister of Science and Higher
Education entitled “PMW” in the years 2021 - 2025; contract no. 5169/H2020/2020/2

Erasmus+ Disclaimer
This project has been funded with support from the European Commission.
This publication reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

Copyright Notice
This content was created by the IOT-OPEN.EU Consortium: 2016–2019 and IOT-OPEN.EU
Reloaded Consortium 2022-2025.
The content is Copyrighted and distributed under CC BY-NC Creative Commons Licence,
free for Non-Commercial use.

In case of commercial use, please get in touch with IOT-OPEN.EU Reloaded Consortium
representative.

6

https://en.wikipedia.org/wiki/Creative_Commons_license
https://www.roboticlab.eu/homelab/_detail/en/iot-open/ccbync.png?id=book%3Aiot-open2nded

1. Introduction

Here comes the Internet of Things. The name that recently makes red-hot people in
business, researchers, developers, geeks and … students. The name that non-technology
related people consider a kind of magic and even a danger to their privacy. The EU set
the name as one of the emerging technologies and estimated the worldwide market will
hit well over 500 billion US dollars in 2022, while the number of IoT devices in 2030 is
expected to be around 3.2 billion.

What is IoT (Internet of Things), then? Surprisingly, the answer is not straightforward.

Content classification hints
The book composes a comprehensive guide for a variety of education levels. A brief
classification of the contents regarding target groups may help in a selective reading
of the book and ease in finding the correct chapters for the desired education level. To
inform a reader about the proposed target group, icons are assigned to the chapters level
1 (top) and 2nd level chapters. The list of icons and their reflection on the target groups
is presented in the table 1.

Table 1: List of icons presenting content classification and corresponding target groups
Icon Target group

General Public audience: all those who want to get familiar with basic concepts but do not necessarily step into
technical details.

Bachelor and Engineering level students

Masters students

Enterprise, VETS and technical

1. Introduction

7

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

1.1. Definition of IoT

Let us roll back to the 1970s first. In 1973, the first RFID device was patented. This
device was the key enabling technology even if it does not look nor remind modern IoT
devices. The low power (actually here passive) solution with a remote antenna large
enough to collect energy from the electromagnetic field and power the device brought
an idea of uniquely identifiable items. That somehow mimics well-known EAN barcodes
and the evolution used nowadays, like QR codes, but every single thing has a different
identity here. In contrast, EAN barcodes present a class of products, not an individual
one. The possibility to identify a unique identity remotely became fundamental to the IoT
as it's known today. RFID is not the only technology standing behind IoT. In the 1990s,
the rapid expansion of wireless networks, including broadband solutions like cellular-
based data transfers with their consequent generations, enabled connecting devices in
various, even distant, geographical locations. Parallelly, an exponential increase in the
number of devices connected to the global Internet network was observed, including the
smartphone revolution that started around the first decade of the XXI century. On the
hardware level, microchips and processors became physically smaller and more energy
efficient yet offering growing computing capabilities and memory size increase, along
with significant price drops. All those facts drove the appearance of small, network-
oriented, cheap and energy-efficient electronic devices. In recent years, the development
of efficient AI technologies has even boosted IoT applications.

What is IoT?
The phrase “Internet of Things” was used for the first time in 1999 by Kevin Ashton
– an expert on digital innovation. Formally, IoT was introduced by the International
Telecommunication Union (ITU) in the ITU Internet report in 2005 [1]. The understanding
and definitions of IoT have changed over the years, but now all agree that this cannot be
seen as a technology issue only. According to IEEE “Special Report: Internet of Things” [2]
released in 2014, IoT is:

IEEE Definition of IoT
A network of items – each embedded with sensors – connected to the Internet.

It relates to the physical aspects of IoT only. The Internet of Things also addresses other
aspects that cover many areas [3]:

▪ enabling technologies,
▪ software,
▪ applications and services,
▪ business models,
▪ social impact,
▪ security and privacy aspects.

IEEE, as one of the most prominent standardisation organisations, also works on
standards related to the IoT. The primary document is IEEE P2413™ [4]. It covers the
technological architecture of IoT as three-layered: sensing at the bottom, networking

1. Introduction

8

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded

and data communication in the middle, and applications on the top. It is essential to
understand that IoT systems are not only small, local-range systems. ITU-T has defined
IoT as:

ITU-T Definition of IoT
A global infrastructure for the information society, enabling advanced services by interconnecting (physical
and virtual) things based on existing and evolving interoperable information and communication
technologies.

In the book [5] by the European Commission, we can read a similar description of what
IoT is: “The IoT is the network of physical objects that contain embedded technology
to communicate and sense or interact with their internal states or the external
environment.” IoT impacts many areas of human activity: manufacturing, transportation,
logistics, healthcare, home automation, media, energy saving, environment protection
and many more. In this course, we will consider the technical aspects mainly.

Thing
In the IoT world, the “thing” is always equipped with some electronic element that can
be as simple as the RFID tag, an active sensor sending data to the global network, or an
autonomous device that can react to environmental changes. In CERP-IoT book “Visions
and Challenges” [6] in the context of “Internet of Things” a “thing” could be defined as:

CERP-IoT Definition of “Thing”
A real/physical or digital/virtual entity that exists and moves in space and time and can be identified.
Assigned identification numbers, names and location addresses commonly identify things.

It is quite easy to find other terms used in the literature like “smart object”, “device”, or
“nodes” [7].

Passive Thing
One can imagine that almost everything in our surroundings is tagged with an RFID
element. They do not need a power supply; they respond with a short message, usually
containing the identification number. Modern RFID can achieve 6 to 7 meters of the
range. Using the active RFID reader, we can quickly locate lost keys and know if we still
have the butter in the fridge and in which wardrobe there is our favourite t-shirt.

Active Thing
If the “thing” includes the sensor, it can send interesting data about current conditions.
We can sense environmental parameters like temperature, humidity, air pollution,
pressure, localisation data, water level, light, noise, and movement. Using different
methods and protocols, this data can be sent to the central collector that connects to
the Internet and the database or cloud. There, the data can be processed, and Artificial
Intelligence algorithms can be used to decide actions that could be taken in different
situations. Active things can also receive control signals from the central controller to
control the environment: turn on/off the heating or light, water flowers, and turn on the
washing machine when there is enough sunlight to generate the required electricity or
charge your electric car.

1.1. Definition of IoT

9

Autonomous Thing
This thing does not even require the controller to make the proper decision. An
autonomous vacuum cleaner can clean our house when it detects that we aren't home
and the floor needs cleaning. The fridge can order our favourite beverage once the last
bottle is empty.

Sensor Network
Sensor Networks are a subset of the IoT devices used as a collaborative solution to grab
data and send it for further processing. Opposite to the general IoT devices, Sensor
Network devices do not have any actuators that can apply an action to the external world.
The data flow is unidirectional, then.

IoT vs Embedded Systems
IoT systems and embedded systems share almost the same domain. They frequently
use the same microcontrollers, sensors and actuators, development software and even
programming models. What differs between IoT and embedded systems is that IoT, on
its principles, uses communication to send and receive data outside of its instance.
Embedded systems do not have to be network-enabled or have a unique identity, while
IoT devices do. Moreover, IoT systems are complex and multilayered, often introducing
cloud-based parts, while embedded systems are stand-alone devices. Indeed, one can
say that an IoT device is a network-enabled embedded system.

1. Introduction

10

1.2. Enabling Technologies

In this chapter, there is an approach to describe modern technologies that appeared in
the last few years, enabling the idea of IoT to be widely implementable. In the [8], one
can read that “The confluence of efficient wireless protocols, improved sensors, cheaper
processors and a wave of startups and established companies made the concept of the
IoT mainstream”. Similar analysis has been done in [9] where authors write that “the
latest developments in RFID, smart sensors, communication technologies and Internet
protocols enable the IoT”. RFID and smart sensors need the microprocessor system
to read, convert the data into digital format, and send it to the Internet using the
communication protocol. This process can be done by small- and medium-scale computer
(embedded) systems. These are essential elements of technologies used in IoT systems.

Edge class devices
In recent years, one can observe rapid growth in microprocessors. It includes not only the
powerful desktop processors but also microcontrollers – elements that are used in small-
scale embedded systems. We can also notice the popularity of microprocessor systems
that can be easily integrated with other factors, like sensors and actuators, connected
to the network. Essential is also the availability of programming tools and environments
supported by different companies and communities. An excellent example of such a
system is Arduino. Those devices are low-power, constrained devices, usually battery-
powered and, in most cases, communicating wirelessly.

Fog class devices
The same growth can be observed in the advanced constructions comparable to low-end
computers. They have more powerful processors, memory and networking connectivity
built in than small-scale computer systems. They can work under the control of
multitasking operating systems like Linux and Windows and embedded or real-time
operating systems like FreeRTOS. Having many libraries, they can successfully work
as hubs for local storage, local controllers and gateways to the Internet. Raspberry Pi
and the nVidia Jetson series are examples of such systems. This category of devices
frequently contains hardware accelerated (such as GPU) AI-capable solutions, e.g. nVidia
Jetson Nano or Xavier series. Those devices can be battery or mains-powered. Often,
they are green energy powered: e.g. with a larger backup battery and energy harvesting
solution (such as solar panel).

Access to the Internet
Nowadays, the Internet is (almost) everywhere. There are lots of wireless networks
available in private and public places. The price of cellular access (3G/4G/5G) is low,
offering a suitable data transfer performance. Connecting the “thing” to the Internet has
never been so easy.

IP Addressing Evolution
The primary paradigm of IoT is that every unit can be individually addressed. With the
addressing scheme used in IPv4, it wouldn't be possible. IPv4 address space delivers
“only” 4 294 967 296 of unique addresses (2^32). If you think it's a considerable number,
imagine that every person in the world has one IP-connected device – IPv4 covers about

1.2. Enabling Technologies

11

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded

half of the human population. The answer is IPv6 with a 128-bit addressing scheme that
gives 3.4 × 10^38 addresses. It will be enough even if everyone has a billion devices
connected to the Internet.

Data Storage and Processing
IoT devices generate the data to be stored and processed somewhere. If there are a
couple of sensors, the amount of data is not very big, but if there are thousands of
sensors generating data hundreds of times every second. The cloud can handle it – the
massive place for the data with tools and applications ready to help with data processing.
Some big, global clouds are available for rent, offering storage, Business Intelligence
tools, and Artificial Intelligence analytic algorithms. There are also smaller private clouds
created to cover the needs of one company only. Many universities have their own High-
Performance Computing Centre.

Mobile Devices
Many people want to be connected to the global network everywhere, anytime, having
their “digital twin” with them. It is possible now with small, powerful mobile devices like
smartphones. Smartphones are also elements of the IoT world, being together sensors,
user interfaces, data collectors, wireless gateways to the Internet, and everything with
mobility features.

The technologies we mentioned here are the most recognisable. Still, there are many
others, more minor, described only in the technical language in some standard
description document, hidden under the colourful displays between large data centres,
making our IoT world operable. In this book, we will describe some of them.

A special note on Fog class and Edge class devices
Technology development instantly shifts devices between categories. A border between
Fog and Edge class devices is conventional; many can share both worlds. It depends
on their purpose, application and performance configuration; thus, Raspberry Pi can be
an end-node (Edge) class device and a Fog class, working as a data aggregator and
analytical device.

1. Introduction

12

1.3. Mobility – New Paradigm for IoT Systems

IoT is a network of physical things or devices that might include sensors or simple data
processing units, complex actuators, and significant hybrid computing power. Today, IoT
systems have transitioned from being perceived as sensor networks to smart-networked
systems capable of solving complex tasks in mass production, public safety, logistics,
medicine and other domains, requiring a broader understanding and acceptance of
current technological advancements, including advanced AI data processing.

Since the very beginning of sensor networks, one of the main challenges has been
data transport and data processing, where significant efforts have been put by the
ICT community towards service-based system architectures. However, The current trend
already provides considerable computing power even in small mobile devices. Therefore,
the concepts of future IoT already shifted towards smarter and more accessible IoT
devices, and data processing has become possible closer to the Fog and Edge.

Cloud Computing
Cloud-based computing is a relatively well-known and adequately employed paradigm
where IoT devices can interact with remotely shared resources such as data storage,
data processing, data mining, and other services are unavailable to them locally because
of the constrained hardware resources (CPU, ROM, RAM) or energy consumption limits.
Although the cloud computing paradigm can handle vast amounts of data from IoT
clusters, the transfer of extensive data to and from cloud computers presents a challenge
due to limited bandwidth[10]. Consequently, there is a need to process data near data
sources, employing the increasing number of smart devices with enormous processing
power and a rising number of service providers available for IoT systems.

1.3. Mobility – New Paradigm for IoT Systems

13

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/introduction/cloud.png?id=book%3Aiot-open2nded

Figure 2: Cloud IoT system' architecture

Fog Computing
Fog computing addressed the bottlenecks of cloud computing regarding data transport
while providing the needed services to IoT systems. It is a new trend in computing
that aims to process the data near the data source. Fog computing pushes applications,
services, data, computing power, and decision-making away from the centralized nodes
to the logical extremes of a network. Fog computing significantly decreases the data
volume that must be moved between end devices and the cloud. Fog computing enables
data analytics and knowledge generation at the data source. Furthermore, the dense
geographic distribution of fog helps to attain a better-localised accuracy for many
applications than the cloud processing of the data [11].
The recent development of energy-efficient hardware with AI acceleration enters the
fog class of the devices, putting Fog Computing in the middle of the interest of IoT
application development and extending new horizons to them. Fog Computing is more
energy efficient than raw data transfer to the cloud and back, and in the current scale
of the IoT devices, the application is meant for the future of the planet Earth. Fog
Computing usually also brings a positive impact on IoT security, e.g. sending to the cloud
preprocessed and depersonalized data and providing distributed computing capabilities
that are more attack-resistant.

Figure 3: Fog IoT system' architecture

Edge Computing
Recent developments in hardware, power efficiency, and a better understanding of IoT
data nature, including privacy and security, led to solutions where data is processed
and preprocessed right to their source in the Edge class devices. Edge data processing
on end-node IoT devices is crucial in systems where privacy is essential and sensitive
data is not to be sent over the network (e.g. biometric data in a raw form). Moreover,
distributed data processing can be considered more energy efficient in some scenarios
where, e.g. extensive, power-consuming processing can be performed during green
energy availability.

1. Introduction

14

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introduction/fog.png?id=book%3Aiot-open2nded

Figure 4: Edge IoT system' architecture

While Cloud, Fog, and Edge systems might seem to the end user the same from a
functionality prospective, they are very different and provide different performance,
scalability, and computing capabilities, which are emphasized in the following
comparison.

1.3. Mobility – New Paradigm for IoT Systems

15

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introduction/edge.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/introduction/differences.png?id=book%3Aiot-open2nded

Figure 5: Differences between Cloud and Edge IoT systems

Cognitive IoT Systems
According to [12], Cognitive IoT, besides a proper combination of hardware, sensors and
data transport, comprises cognitive computing, which consists of the following main
components:

▪ understanding – in the case of IoT, it means systems' capability to process a
significant amount of structured and unstructured data, extract the meaning of the
data – produce a model that binds data to reality,

▪ reasoning – involves decision-making according to the understood model and
acquired data,

▪ learning – creating new knowledge from the existing, sensed data and elaborated
models.

Usually, cognitive IoT systems or C-IoT are expected to add more resilience to the
solution. Resilience is a complex term and is differently explained under different
contexts; however, there are standard features for all resilient systems. As a part of
their resilience, C-IoT should be capable of self-failure detection and self-healing that
minimises or gradually degrades the system's overall performance. In this respect, the
non-resilient system fails or degrades in a step-wise manner. In case of security issues,
that system should be able to change its security keys and encryption algorithms and
take other measures to cope with the detected threats. Self-optimisation abilities are
often considered part of the C-IoT feature list to provide more robust solutions. Recent
developments in the Fog and Edge class devices and the efficient software leverage
cognitive IoT Systems to a new level.

All three approaches, from cloud to cognitive systems, focus on adding value to IoT
devices, system users and related systems on-demand. Since market and technology
acceptance of mobile devices is still growing, and the amount of produced data from
those devices is growing exponentially, mobility as a phenomenon is one of the main
driving forces of the technological advancements of the near future.

1. Introduction

16

1.4. Data Management Aspects in IoT

Data management is a critical task in IoT. Due to the high number of devices (things)
already available, that is tens of billions. Considering the data traffic generated by
each of them through, e.g. sensor networks, infotainment (soft news) or surveillance
systems, mobile social network clients, and so on, we are now even beyond the ZettaByte
(ZB 2^70, 10^21 bytes) era. This opened up several new challenges in (IoT) data
management, giving rise to data sciences and big data technologies. Such challenges
have not to be considered as main issues to solve but also as significant opportunities
fuelling the digital economy with new directions such as Cloudonomics [13] and
IoTonomics, where data can be considered as a utility, a commodity to manage, curate,
store, and trade appropriately. Therefore, properly managing data in IoT contexts is not
only critical but also of strategic importance for business players as well as for users,
evolving into prosumers (producers-consumers).

From a technological perspective, the main aspects of dealing with IoT data management
are:

▪ Data source - data generation and production is a relevant part of IoT, involving
sensors probing the physical system. In a cyber-physical-social system view, such
sensors could be virtual (e.g. software) or even human (e.g. citizens, crowdsensing).
The main issues in data production are related to the type and format of data,
heterogeneity in measurements and similar issues. Semantics is the key to solving
these issues through specific standards such as Sensor Web Enablement and
Semantic Sensor Networks.

▪ Data collection/gathering - once data are generated, these should be gathered
and made available for processing. The collection process needs to ensure that the
data collected are defined and accurate so that subsequent decisions based on the
findings are valid. Some types of data collection include census (data collection about
everything in a group or statistical population), sample survey (collection method
that provides for only part of the total population), and administrative byproduct
(data collection is a byproduct of an organization’s day-to-day operations). Usually,
wireless communication technologies such as Zigbee, BlueTooth, LoRa, Wi-Fi and 3G/
4G networks are used by IoT smart objects and things to deliver data to collection
points.

▪ Filtering - is a specific preprocessing activity, usually performed at data source or
data collector (IoT) nodes (e.g. motes, base stations, hotspots, gateways), aiming at
cleaning noisy data, filtering noise and not helpful information.

▪ Aggregation/fusion - to reduce bandwidth before sending data to processing nodes,
these are further elaborated, compressed, aggregated and fused (sensor/data fusion)
to reduce the overall volume of raw data to be transmitted and stored.

▪ Processing - once data are adequately collected, filtered, aggregated, and fused,
they can be processed. Processing can be local and remote and usually includes
preprocessing activities to prepare data for actual processing. Local processing, when
possible, is mainly tasked with a fast, lightweight computation on edges (Edge
computing) and in the Fog layer, wherever possible, quickly providing results and
local analytics. More complex computations are usually demanded to remote
(physical or virtual) servers provided by local nodes (e.g. communication servers,

1.4. Data Management Aspects in IoT

17

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded

cloudlets) in a Fog computing fashion or by Cloud providers as virtual machines
hosted in data centres. This kind of computation can also involve historical data,
providing global analytics, but hardly meets time-constrained applications and real-
time requirements.

▪ Storage/archive - remote servers are also used for permanently storing and
archiving data, making these available for further processing, even to third parties.
The database is often used for that, mainly based on distributed, NoSQL key-store
technologies to improve reliability and performance.

▪ Delivering/presentation/visualization - processing activity results must then be
delivered to requestors and users. These have to be, therefore, adequately organized
and formatted, ready for end-users. IoT data visualization is becoming an integral part
of the IoT. Data visualization provides a way to display this avalanche of collected
data in meaningful ways that clearly present insights hidden within this mass amount
of information.

▪ Security and privacy - data privacy and security are among the most critical
issues in IoT data management. Good results and reliable techniques for secure data
transmission, such as TLS and similar, are available. This way, IoT data security
issues mainly concern [14] securing IoT devices, since they are usually resource-
constrained and therefore do not allow to adopt traditional cryptography scheme to
data encryption/decryption. Data privacy and integrity should also be enforced in
remote storage servers, anonymizing data and allowing owners to properly manage
(monitoring, removing) them while ensuring availability. Indeed, security and privacy
issues vertically span the whole IoT stack. A promising technique to address IoT
security issues, attracting growing interest from both academic and business
communities, is blockchain [15].

1. Introduction

18

1.5. IoT Application Domains

There is a rapid increase in the adoption of IoT in the various sectors (e.g., intelligent
transport systems, smart health care, smart manufacturing, smart homes, smart cities,
smart agriculture, and smart energy) of the society or economy. IoT technologies are
being applied in the various sectors of the economy to increase efficiency, solve technical
challenges, and create value to increase companies' earnings and improve user
experience. The increasing adoption of IoT technologies in the various sectors of the
economy or industry has made IoT technology the pillar of the fourth and fifth industrial
revolutions (industry 4.0 and Industry 5.0).

Application domains of the Internet of Things solutions are vast. Some of the applications
of IoT include the following[16]:

▪ building and home automation,
▪ smart water,
▪ internet of food,
▪ smart metering,
▪ smart city (including logistics, retail, transportation),
▪ industrial IoT,
▪ precision agriculture and smart farming,
▪ security and emergencies,
▪ healthcare and wellness (including wearables),
▪ smart environment,
▪ energy management,
▪ robotics,
▪ smart grids.

Smart Homes are one of the first examples that come to mind when discussing the
Internet of Things domain applications. Smart home benefits include reduced energy
wastage, the quality and reliability of devices, system security, reduced cost of basic
needs, etc. Some home automation examples are environmental control systems that
monitor and control heating, ventilation, air conditioning and sunscreens; electrical
charging of vehicles; solar panels for electrical power and hot water; ambient lighting
control, smart lighting for aquaria; home cooking and food ordering; access control
(doors, garage, gate); smart plant irrigation systems (both indoors and outdoors); baby
monitoring; timed pet food dispensers; monitoring perishable goods (for example, in the
refrigerator); household items remote monitoring (for instance, of washer cycle status);
tracking and proactive maintenance scheduling (such as e.g. electric car charging);
event-triggered task execution. Home security also plays a significant role in smart
homes. Examples of applications are automatic door locks, sensors for opening doors and
windows, pressure, motion and infrared sensors, security cameras, notifications about
security (to the owner or the police) and fitness-related applications.

1.5. IoT Application Domains

19

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded

In Smart City, multiple IoT-based services are applied to different areas of urban
settings. The aim of the smart city is the best use of public resources, improvement of
the quality of resources provided to people and reduction of operating costs of public
administration [17]. A smart city can include many solutions like smart buildings, smart
grids for improving energy management, smart tourism, monitoring of the state of the
roads and occupation of parking lots, public transportation optimisation, public safety,
environment monitoring, automatic street lighting, signalling with smart power devices,
control of water levels for hydropower or flood warnings, electricity-generating devices
like solar panels and wind turbines, weather monitoring stations.
Transportation in smart cities may include aviation, monitoring and forecasting of traffic
slowdowns, timetables and current status, navigation and route planning, as well as
vehicle diagnostics and maintenance reports, remote maintenance services, traffic
accident information collection, fleet management using digital tachographs, smart
parking, car/bicycle sharing services [18]. IoT in transportation makes cars
interconnected, particularly in the approaching autonomous vehicles era.

Smart Grid is a digital power distribution system. This system gathers information
using smart meters, sensors and other devices. After these data are processed, power
distribution can be adapted accordingly. Smart grids deliver sustainable, economical and
secure electricity supplies efficiently.

In Precision Agriculture and Smart Farming IoT solutions can be used to monitor
the moisture of the soil and conditions of the plants, control microclimate conditions
and monitor the weather conditions to improve farming [19]. The goal of using IoT in
agriculture is maximising the harvest, reducing operational costs, being more efficient,
and reducing environmental pollution using low-cost automated solutions. An interaction
between the farmer and the systems can be done using a human-machine interface. In
the future smart precision farming can be a solution for such challenges as increasing
worldwide demand for food, a changing climate, and a limited supply of water and fossil
fuels [20].

Internet of Food integrates many of the abovementioned techniques and encompasses
different stages of the food delivery chain, including smart farming, food processing,
transportation, storage, retail, and consumption. It provides more safety and improved
efficiency at each food production and consumption stage, including reduced waste and
increased transparency.

Like precision agriculture, which is part of IoT in industry, Smart Factories also tend to
improve manufacturing by monitoring pollutant gas emissions, locating employees and
with many other solutions.

Industrial IoT and smart factories are part of the Industry 4.0 revolution. In this model,
modern factories can automate complex manufacturing tasks, thanks to the Machine-
To-Machine communication model, which provides more flexibility in the manufacturing
process to easily enable personalised, short-volume product manufacturing.

In the healthcare and wellness, IoT applications can monitor and diagnose patients
and manage people and medical resources. It allows remote and continuous monitoring
of the vital signs of patients to improve medical care and wellness [21]. An essential
part of smart welfare is wearables, including wristbands and smartwatches that monitor
the activity level, heart rate and other parameters. Smart healthcare includes remote
monitoring, care of patients, self-monitoring, smart pills, smart home care, Real-Time
Health Systems (RTHS) and many more. Medical robotics can also be part of the

1. Introduction

20

healthcare IoT system that includes medical robots in precision surgery or distance
surgery; some robots are used in rehabilitation and hospitals (for example, Panasonic
HOSPI [22]) for delivering medication, drinks, etc. to patients.

Wearables used in IoT applications should be highly energy efficient, ultra-low power
and small-sized. Wearables are installed with sensors and software for data and
information collected about the user. Devices used in daily life like Fitbit [23] are used
to track people's health and exercise progress in previously impossible ways, and
smartwatches allow to access smartphones using this device on the wrist. But wearables
are not limited only to wearing them on the wrist. They can also be glasses equipped with
a camera, a sports bundle attached to the shoes, a camera attached to the helmet, or a
necklace [24].

Smart supply chains integrate IoT and other modern information and communication
technologies to manage supply chain systems and facilitate the flow of raw materials and
finished goods, increasing efficiency and productivity in manufacturing, transportation,
retail, distribution, shipping, planning and management. IoT sensors are installed
throughout the supply chain infrastructure to collect monitoring data, sent to data
analytic platforms for advanced analytics. The analysis results are used for the various
stakeholders to make quick decisions and react or respond quickly when necessary. Some
tasks are automated using IoT actuators controlled by commands from data analytics
platforms that analyse sensor data and then carry out control measures or responses.
Some of the IoT use cases in supply chains include:

▪ Location tracking -the tracking of the location of raw materials and finished goods
throughout the supply chain.

▪ Monitoring the products' physical condition or state during transportation and storage
throughout the supply chain.

▪ Asset monitoring and management (e.g., fleet management) -monitoring the various
assets deployed throughout the supply chain to facilitate the smooth functioning of
the supply chain.

▪ Stock management -managing the available warehouse stocks, deliveries and orders.

Integrating IoT into supply chains and other technologies such as AI and blockchains
transforms supply chains, increasing efficiency and productivity. The supply chain
bottlenecks experienced during and after the COVID-19 period demonstrate the need to
increase the efficiency of supply chains even though they are getting more complex. The
deployment of IoT and other modern technologies to automate some of the processes to
increase efficiency and productivity is very important.

IoT-supported retail stores, used to automate some of the processes in supermarkets
and small and medium-sized shops. It is driven by the shortage of workers to work
in retail stores, the need to reduce costs, and to reduce waiting lines in retail stores.
Using IoT technologies to automate some processes increases efficiency and productivity,
especially in inventory management, supply chain management, and customer service.
Some of the IoT use cases in retail stores include:

▪ Automated checkout points where customers can serve themselves without needing
customer service agents.

▪ Surveillance monitoring of the entire supermarket or store.
▪ Monitoring of the products in the supermarkets and control of the environmental

1.5. IoT Application Domains

21

conditions to prolong the shelf life of perishable products.
▪ Smart shelves for tracking the stock on the shelves.
▪ Robots to automate some of the tasks that can be executed repeatedly without

human intervention.
▪ IoT-based shopping assistant that monitors the stock of the consumers at home and

then reminds them of what they need to buy (and could even order them online).

Supermarkets and shops are becoming smarter with the increased deployment of IoT
technologies to automate some of their processes to increase efficiency and productivity
and decrease cost. With the gradual decrease in the cost of IoT technologies,
supermarkets and small and medium-sized stores will adopt IoT technologies to automate
some of their processes.

IoT-based Intelligent Transport Systems (IoT-ITS), that integrate modern
Information and Communication Systems and modern technologies into transportation
systems to increase productivity and efficiency. It involves using IoT sensors to collect
real-time data, which enables real-time monitoring and control to increase the
productivity and efficiency of transportation systems and to satisfy some design goals
(e.g., reduction of emissions and accidents, improvement of user experiences). Some of
the benefits of intelligent transportation systems include:

▪ Reduction of road traffic, which increases user experience, reduces energy
consumption and lowers emissions.

▪ Enable optimal use of critical resources in transportation systems and increase
efficiency and productivity.

▪ Reduces accidents and facilitates timely emergency response, increasing the safety
and security of users.

▪ Reduces emissions, enabling the transition into cleaner and sustainable
transportation systems.

▪ Increases productivity and efficiency in transportation systems, increasing returns on
investments.

▪ Increase user experience, e.g., reduce the time users spend waiting in traffic (efficient
traffic management), reduce the waiting time of users of public transport systems
(reduces delays).

In IoT-based Intelligent transport systems (IoT-ITS), IoT sensors are used to gather data
sent to computing platforms at a control centre when the data is processed and analysed.
The analysis results inform various stakeholders for quick decision-making and timely
response. The results of the computations can be sent to manipulate actuators to control
some systems within the intelligent transportation system. Some of the use cases of
Intelligent Transport Systems are:

▪ Optimal traffic routing based on real-time traffic monitoring.
▪ Providing relevant information (weather reports, state of the roads, traffic) to road

users to ensure their safety and security and to increase their user experience.
▪ Assist drivers in searching for available parking places, including cheaper and free

parking spaces in their vicinity.
▪ Timely detection and response to traffic incidents (accidents).

1. Introduction

22

▪ Real-time traffic rerouting when necessary, especially when the condition of the roads
is unsuitable or when there is an emergency.

▪ Automatic control of speed limits.
▪ Monitoring of structural properties of the public transport infrastructure to inform

users to be aware, ensuring their safety.

Internet of Military Things (IoMT), also known as the Military Internet of Things (M-
IoT) or Battlespace IoT (B-IoT), is the integration of IoT sensor and actuator devices into
military weapons and battlefield infrastructure for information gathering and automation
of some processes, increasing the efficiency of intelligence gathering and combat. Some
battlefield assets such as ships, aircraft, battle tanks, weapons, munitions, drones, tucks,
soldiers, and operating bases are connected to enable seamless interoperability and
efficient cooperation between the various units and systems on the battlefield. The
massive amount of data gathered by the sensors embedded within the different military
systems provides the relevant stakeholders within the military chain of command a
comprehensive situational awareness, improving the efficiency of the command and
control and combat operations, especially in complex and diverse conflict zones.

Using sensor networks, actuators and robots on the battlefield to increase situational
awareness, risk assessment, response time, and precision is not new. Still, the rapid
evolution of IoT technologies and artificial intelligence (AI) will radically transform the
future battlefields. The combination of IoT, robotics, and AI will automate some military
operations, increasing flexibility and precision during combat and reducing the number
of casualties in terms of the number of soldiers killed during combat operations. A
significant challenge with M-IoT or B-IoT is cyber security. Incorporating IoT sensors and
actuator networks within the military systems and infrastructure exposes them to cyber
security risks. A cyber security breach could compromise or disrupt command, control,
and combat operations.

Green and sustainable IoT is the application of IoT technologies to reduce pollution
and the impact of climate change on the environment and livelihoods. It also involves
the application of IoT for resource management and conversations. Sensors are deployed
to collect data from the environment. The data collected is analysed for rapid and
timely decision-making and control, reducing pollution and conserving critical resources
required to sustain ecosystems and human progress. Some of the green and sustainable
IoT applications include the following:

▪ Smart agriculture: One use case example is IoT-based smart irrigation systems
designed to reduce water usage in agricultural operations.

▪ Smart energy: Applying IoT technologies to reduce energy consumption (reducing the
carbon footprint) and improve electricity infrastructure efficiency.

▪ Environmental monitoring: Using IoT to monitor and control the level of pollution in
the environment and to detect environmental disasters and prepare for them before
they occur.

▪ Resource management: Application of IoT to conserve critical resources like water and
wildlife.

▪ Supply chains: Increasing the efficiency of supply chains to reduce their carbon
emission and other forms of pollution.

The IoT applications discussed above are just a few of the IoT applications that are being
developed and adopted in various industries. New IoT application use cases are being

1.5. IoT Application Domains

23

designed, and a detailed discussion of almost all IoT applications is out of the scope of
this book. However, the IoT applications presented above are a broad category of IoT
applications.

1. Introduction

24

2. Introduction to the IoT Microcontrollers

IoT device is, in almost all cases, based on microcontroller. A microcontroller, often
called a single-chip computer, is an integrated circuit that incorporates all units required
to function as the computer. It includes a central processing unit (CPU), memory for
programs, memory for data, inputs, outputs, timers, serial communication ports and
other peripherals. Complex microcontrollers, called embedded processors, can include
more processor cores, display controllers, advanced internal data transfer mechanisms
(like DMA), programmable connections between modules, specialised coprocessors for
ciphering and deciphering, compression and decompression, video and audio coding
and decoding, and other modules. Wireless networking capability makes Microcontrollers
even more complex in the IoT world. A complex microcontroller equipped with an internal
radio communication module is also known as a System on Chip (SoC).

Although many microcontrollers or SoCs are called processors,
historically, the processor is the name of the element of the
CPU functionality only. It must be connected to memory and
peripherals to form a fully functional computer. On the other
hand, a microcontroller, embedded processor or System on
Chip can work without any external elements; it just requires
the power supply to operate.

The typical microcontroller includes general-purpose units like:

▪ CPU core,
▪ Program memory,
▪ Data memory,
▪ Timers, Counters,
▪ Interrupt controller,
▪ I/O ports,
▪ Serial synchronous and asynchronous communication ports,
▪ Analog to Digital converter,
▪ PWM (Pulse width Modulation unit for Digital to Analog conversion),
▪ DMA controller,
▪ Supervisory units (Watchdog, Reset, Brownout).

Embedded Processor or System on Chip can contain also:

▪ Network interface,
▪ USB controller,

2. Introduction to the IoT Microcontrollers

25

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ Memory interface module,
▪ Floating point unit (FPU),
▪ Cryptographic module,
▪ Other application-specific extensions.

The CPU core is the unit that executes the main program. It controls program flow,
executes general-purpose instructions, calculates addresses, and processes integer
values. For fast floating point calculations, an FPU coprocessor is built-in. It executes
instructions that perform calculations on real numbers and advanced mathematical
functions. The program instructions are fetched from program memory, usually
implemented as internal or external flash memory. Data is stored in internal data
memory implemented as static RAM. If more memory is needed, some microcontrollers
have a memory management unit that allows them to connect external DRAM memory.
Flash memory is often used as a place for file storage. Timers and counters are
units that help to generate pulses of specified length and square signals of selected
frequency. They can also measure delays and synchronise the work of other modules
like serial ports, converters, and displays. Timers can generate pulse width modulated
signals to control the speed of motors and light brightness. Microcontrollers have digital
input and output ports to connect other elements of the systems. Connecting external
sensors to collect information from the surroundings and output devices to manipulate
environmental parameters is possible. Analogue inputs can read the voltage value
generated by simple sensors. Serial communication ports are used to connect more
complex sensors and displays to communicate with the user or another computer
system. An interrupt controller is a unit that automatically executes subroutines
responsible for handling tasks specific to the hardware that signalled the situation that
needs the processor's attention. The processor doesn't have to waste execution time
by periodically checking if there is a need to take care of the device. It helps to make
the code more efficient and reliable. Supervisory units help to recover from some
abnormal situations. Watchdog resets the processor in case the software hangs up.
Brownout detector constantly monitors the power supply voltage. It stops the processor
if the voltage is too low for proper operation to avoid execution errors, flash write errors,
and other malfunctions. Supervisory interfaces like JTAG allow writing the programs into
flash memory and debugging the code. Direct Memory Access (DMA) module performs
memory operations without processor intervention. It is usually used for copying data
blocks between memory and other peripheral units. For example, data from the network
unit is stored automatically in the buffer, and the CPU is informed while the data transfer
is complete.

Details of the internal construction and operation of many internal modules of popular
microcontrollers are described in further chapters of this book.

2. Introduction to the IoT Microcontrollers

26

3. Introduction to Embedded Programming

IoT systems share programming paradigms with embedded systems. Each
microcontroller manufacturer has its own set of tools (called SDK or Development
Framework) that frequently contain an IDE dedicated to the platform. There are some
cross-platform solutions and frameworks, however.
Programming languages include:

▪ C/C++ - undoubtedly the most popular, versatile, yet demanding programming
language. With modern supporting tools such as syntax highlights, code samples,
code generators (AI-based) and instant syntax checking, C/C++ programming
became relatively easy but still requires solid software development foundations.
On the other hand, it is probably the only programming language that is natively
supported with hardware debugging features. C/C++ bare metal programming allows
the developer to control all MCU features on the lowest level and implement energy-
efficient, fast and compact solutions.

▪ Java and Javascript - with low entry-level for developers, usually represented by the
variation of NodeJS, limited and applicable to beginners. Within the constraints of
the interpreter, it provides rapid prototyping and the fastest market delivery but the
lowest flexibility and extensibility beyond what the manufacturer plans. Also, the Java
development framework implemented in the microcontroller is compact because of
the constrained resources. Usually, it does not keep standards, so the feature of the
portability of the code is somewhat limited.

▪ Python (Micropython) - similarly to Java, offers an easy start but low flexibility and
control over the hardware. Acceptable for prototyping.

▪ Other.

3. Introduction to Embedded Programming

27

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

3.1. IoT and Embedded Systems Programming Models

IoT device programming can be done on a variety of levels. Below are the most popular
models and a brief discussion of their pros and cons.

Bare Metal Programming
The bare metal programming model is where the software developer builds firmware
(usually from scratch or based on a stub generated by the SDK) and flashes it to the
MCU. The MCU usually does not contain software other than technical ones necessary for
starting and updating the device, e.g. a bootloader. The developer must implement all
algorithms, communication, interfacing, storage, etc., on a low level. They may use 3rd
party libraries to implement it, which speeds up development significantly. There is no
operating system running in the background. Eventually, it comes with the firmware as
part of it, as included by the developer, e.g. FreeRTOS [25].

Bare metal programming applies first to the Edge class
devices, rarely to the Fog class.

Bare metal programming requires a good understanding of the hardware configuration of
the IoT device as well as the configuration of the software development toolchain. The
MCU manufacturer usually provides SDK and related tools, but there do exist middleware
solutions (such as PlatformIO [26]) that significantly simplify installation.

In most cases, source code is written in C or C++ language or their combination (e.g.
in the case of the STM). The development process for bare metal programming is
present in the following figure 6 and its features are discussed in table 2. In short, it
requires developing, compiling and uploading the firmware to the device's flash memory.
Programming uses a programmer (physical or Over-the-air - OTA, virtual interface). The
bare metal model usually provides the capability of hardware development.

Figure 6: Bare metal IoT firmware development process

The bare metal programming model is considered the only one to enable developers
to have absolute control over the hardware on a very low level. On the one hand, it
brings opportunities to implement non-standard solutions and optimal code in terms of
compactness and efficiency; on the other, it increases time-to-market delivery. Recent
advances in development supporting tools (e.g. AI-based code generation), wide
availability of the libraries, standardisation of their presence and automated

3. Introduction to Embedded Programming

28

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/programming_models-bare_metal.drawio.png?id=book%3Aiot-open2nded

management, such as, e.g. in PlatformIO Library Management [27] significantly lower this
time.

Table 2: Bare metal programming pros and cons
Pros Cons

Absolute control over hardware Need to implement all from scratch

Secure, low vulnerability Requires good hardware
understanding

No bottlenecks Requires advanced programming
skills

Efficient and compact code Requires complex development
environment

Fastest, no overhead of the middleware Possibility to brick the device during
flashing

Good community support Time consuming implementation

Highly flexible, enables the developer to prepare non-standard solutions

Provides hardware debugging capabilities

Energy efficient, it gives control over low-level, energy-saving mechanisms (waitstates, sleep
modes, radio power, etc.)

In the IoT world, it is common to distribute firmware remotely
(OTA - Over The Air). For this reason, it is pretty frequent that
the flash memory of the IoT device is split in half into two
partitions, each containing a different version of the firmware
(old and new). OTA mechanism flashes an inactive partition,
and then the bootloader swaps them during the reboot of the
device once flashing is done. If new firmware fails to boot, the
bootloader swaps the partition back to run the old version,
reboots the device, and notifies about the update error.

Script Programming with Middleware
Opposite to bare metal programming, script programming does not involve compilation
or firmware burning into the flash memory. This programming model uses interpreted
languages such as Python (actually Micropython: an edition of Python for microcontrollers
dedicated to constrained devices), NodeJS, Javascript, Java, C#, etc. A virtual machine
middleware (programming language interpreter) running bare metal (installed as
firmware) or as a part of the operating system (if any), and the developer prepares an
algorithm as a script, usually in a textual form, later uploaded and executed on the
device. The middleware brings an overhead on execution; thus, this solution is intended
for not-so-constrained IoT devices, still acceptable for Edge and quite common for Fog
class. It requires much more CPU, RAM and storage than bare metal programming, has
limitations from the interpreter implementation and only indirectly accesses hardware. It

3.1. IoT and Embedded Systems Programming Models

29

is not suitable for real-time solutions.

Scripting programming is common for more powerful Edge
devices and almost the first choice for Fog class devices.

The development process for scripting programming is present in the following figure 7
and its features are discussed in table 3. In short, it requires limited SDK (or none), but
debugging is complex, if possible.

Figure 7: Scripting IoT programming process

This programming model is suitable wherever standard solutions are implemented and
where code execution efficiency is not critical, and there is no demand for real-time
operations; eventually, the IoT device is unconstrained, providing developers with decent
CPU (e.g. modern ARM), RAM and storage. Note those solutions are usually less energy
efficient than bare metal programming; still, they offer great flexibility in algorithm
implementation, far beyond a predefined list of choices or limited configuration as
presented in the following section. On the other hand, it speeds up delivery time to the
market because of the ease of implementation, the lack of need to install the complex
software development environment and the high level of abstraction.

Table 3: Scripting programming pros and cons
Pros Cons

Better suitable for beginners Not optimal because of the middleware overhead on execution

Uses higher abstraction level Not suitable for real-time operations

Uses high-level programming languages Limited hardware interfacing and features to those exposed by the
middleware

Usually does not involve complex SDK/development
environment Limited and non-optimal energy efficiency management

Flexible enough to implement complex algorithms Low extendibility

Rapid development Middleware updates used to cause the need to adapt script with
algorithm

Hardware debugging is tricky or not possible at all

Configuring Firmware
Several configurable firmware (IoT frameworks) are available for various IoT devices.
This development model focuses on reconfiguring the ready-to-use firmware delivered
“as is” using some configuration interface or script (or both). Eventually, modifying and
recompiling it yourself is possible if it is open source. Still, the recompilation process
is usually very complex, and understanding all relations and development toolchains

3. Introduction to Embedded Programming

30

https://www.roboticlab.eu/homelab/_detail/en/iot-open/programming_models-scripting.drawio.png?id=book%3Aiot-open2nded

is sometimes more complicated than developing a solution from scratch as a bare
metal. Some open-source firmware (like Tasmota, ESPhome, and OpenBeken) offer high
flexibility and configureability, making their use the simplest and fastest way to develop
IoT devices. In contrast, proprietary firmware does not bring this opportunity at all and
is delivered “as is” with a predefined set of features. Software modifications are not
allowed, and configuration is limited to changing the state of the elements from simply
switching them on and off to setting up access and credentials. This usually does not
bring capabilities to modify the algorithm, eventually to choose a behaviour from the
predefined list proposed by the firmware author. Such a model does not bring debugging
capabilities; finally, simple tracking with error codes and log files (if at all). Moreover,
in many scenarios, firmware operation is dependent on some external resources (e.g.
authorisation via a cloud or firmware updates delivered with this channel).

Firmware configuration model is applied to both Edge and Fog
class devices, exposed via IoT frameworks. Sometimes, it also
involves the cloud part of the solution.

The development process for the firmware configuration model is present in the following
figure 8 and its features are discussed in table 8.

Figure 8: Firmware configuration process

Configuration range varies among IoT frameworks but commonly requires compatible
hardware. Proprietary firmware provides sealed configuration software and encryption;
thus, it virtually excludes any non-standard modifications or makes them very complex.
Configuration in proprietary firmware scenarios can be provided indirectly via a cloud
solution that raises serious questions about privacy (e.g. configuring your private WiFi
router credentials via a public or 3rd party cloud, not directly to the device). It is worth
mentioning that IoT hardware used to be compatible with more than one firmware, and
proprietary ones can be replaced with alternative open-source firmware, e.g. Tasmota
[28], ESPHome [29], OpenBeken [30], ESPEasy [31], ESPurna [32]. Unfortunately, the
replacement process usually requires specialised skills like soldering because, in most

3.1. IoT and Embedded Systems Programming Models

31

https://www.roboticlab.eu/homelab/_detail/en/iot-open/programming_models-configure.drawio.png?id=book%3Aiot-open2nded

cases, first-time reflashing needs a physical connection with the chip.

WARNING! The reflashing process usually needs specialised
skills and requires high care. Flashing an alternative firmware
can lead to unexpected behaviour of the device and can make
the device unusable. Never connect anything or touch the
device while it is opened and powered by an electric line!

Table 4: Middleware configuration model pros and cons
Pros Cons

Easy to use even for beginners Limited number of use scenarios

Consistent environment (configuration, use) common look and feel Problems appearing hard to solve in case of failure

No need for SDK, configuration tools use plain text, browsers or
apps

Low flexibility - limited support for hardware (only proprietary or
limited compatibility in the case of the open source)

Manufacturer's support (for proprietary) but usually for a limited
time and shorter compared to open source solutions Doubtful privacy, in particular when a public cloud is in use

Usually reliable Lack of help once the Manufacturer's maintenance period is
finished

During the maintenance period, updates are given by the vendor

In this book, we focus on the bare metal programming model
using the C/C++ model, but we also present some aspects
of scripting programming and review some IoT frameworks
that are exposed with the alternative firmware configuration
model.

3. Introduction to Embedded Programming

32

3.2. Introduction to the Programming Frameworks

In the beginning, it is essential to distinguish an IoT Framework that is a set of tools,
firmware for a variety of devices, sometimes also hardware, delivered as is and providing
developers with configuration capabilities on the high abstraction level from the
Programming Framework that is related to the low-level programming, here in C/C++,
referred to as an SDK. SDK tends to be a narrower definition than a programming
framework as the former contains both SDK and tools, development toolchain and code
organisation rules.
This chapter presents and discusses programming frameworks (SDKs and source code
organisation) that define how the IoT code is organised on the low level in the Bare Metal
programming model for Edge class devices.

Almost every MCU (microchip/microcontroller) vendor develops its own SDK, providing
programmers with a specific programming framework. It is worth nothing to mention that,
in many cases, it follows the general programming construction of the source code for C
or C++, such as below:

int main() {
std::cout << "Hello IoT!";
return 0;

}

A common approach is to use a GUI to automate the generation of the source code stub
that contains the hardware-specific configuration, e.g. timers, GPIOs, and interrupts, to
avoid monotonous and complex tasks and speed up time to market.
Still, as hardware differs, it is particular for each platform, and usually, software
development requires a rigorous approach to inject user-specific code only in predefined
locations. Otherwise, it may break source code or even delete it when re-generating
configuration using SDK tools and automation. Sample main() function for the STM32
MCU is presented below. Developers are intended to fill their code only in predefined
areas, such as starting from USER CODE BEGIN Init and finishing before USER CODE END
Init; otherwise, the source code will be gone when updating the configuration:

int main(void)
{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */
HAL_Init();
/* USER CODE BEGIN Init */

/* USER CODE END Init */
SystemClock_Config();
/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */
MX_GPIO_Init();
MX_LPUART1_UART_Init();
MX_NVIC_Init();
/* USER CODE BEGIN 2 */

3.2. Introduction to the Programming Frameworks

33

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

nUARTBufferLen = sprintf((char*)tUARTBuffer, "Hello World!\n\r");
HAL_UART_Transmit_IT(&hlpuart1, tUARTBuffer, nUARTBufferLen);

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

}

Studying specific platforms is time-consuming, and as each vendor has its approach,
knowledge and source codes are usually not portable between microcontrollers.
Specific frameworks for hardware vendors are (among others):

▪ Espressif ESP8266:
▪ ESP8266 RTOS SDK,
▪ ESP8266 Non-OS SDK,
▪ Arduino.

▪ AVR/Atmel:
▪ AVR Studio (Atmel Studio),
▪ Arduino.

▪ Espressif ESP32:
▪ ESP-IDF,
▪ Arduino.

▪ Nordic Semiconductors nRF52:
▪ Mbed,
▪ Zephyr RTOS,
▪ nRF5 SDK,
▪ Arduino.

▪ ST Microelectronics STM32 series:
▪ Mbed,
▪ CMSIS,
▪ Zephyr RTOS,
▪ Registers programming model (RAW),
▪ STM32Cube (HAL),
▪ Arduino.

3. Introduction to Embedded Programming

34

http://www.opengroup.org/onlinepubs/009695399/functions/sprintf.html

Typical C++ code, as presented above, is a single-pass execution. On the other hand,
IoT devices used to work infinitely, handling their duties such as reading sensors,
communicating over the network, sending and receiving data, routing messages and so
on, thus requiring setting up an infinite while (1) loop for processing. Many tasks need
to be done in parallel, so it is expected to include a task scheduling mechanism to run
multiple tasks asynchronously. A common is to use the FreeRTOS [33] or its modified
versions for the specific hardware platform provided by the hardware vendor, e.g. as in
the case of the ESP32 [34] to provide support for multicore MCUs.

Name FreeRTOS may be misleading because it can be
understood as a general purpose operating system (GPOS),
suggesting it runs in the background before your application
starts as Windows or Linux does. FreeRTOS as an Embedded
Operating System (OS for embedded systems and
microcontrollers) is included as a C/C++ library in the source
code and built into the firmware and algorithms. It provides
similar functionalities as the GPOS kernel with task handling,
memory management, file system, etc.

3.2.1. Arduino Framework
Observing the list of software frameworks above, one can easily find that many platforms
have common frameworks, but the Arduino framework is present for all of them. Arduino
framework is a cross-platform approach providing a slightly higher level of abstraction
over dedicated software frameworks, and it is the most popular among hobbyists,
students, professionals and even researchers at the moment. Arduino Framework is a
reasonable balance between uniform code organisation and elements of cross-hardware
HAL, still bringing opportunities to access hardware on a low level and get the advantage
of the advanced features of modern IoT microcontrollers such as, e.g. power
management. Most hardware vendors support this framework natively, and it has
become almost an industry standard. Some advanced hardware controls may require
integration or other native frameworks, anyway. Still, the Arduino framework has real-
time capacity. It is powerful and flexible enough to handle most IoT-related tasks, and
most of all, it has excellent community support with dozens of software libraries,
examples and applications worldwide.

A dummy C/C++ code for the Arduino framework looks as follows:

void setup()
{

}

void loop()
{

}

The void setup() function is executed only once after the microcontroller reboots. Its

3.2. Introduction to the Programming Frameworks

35

purpose is to initialise, instantiate objects, read configuration, check working conditions,
and so on: generally, all tasks that are to be executed only once in a work cycle of the IoT
device.
The void loop() function is executed in a loop automatically and infinitely once a single
pass is finished. Its purpose is to implement repeating tasks such as periodic reading of
a sensor and sending the data to the cloud. There is no need to implement a dummy
while(1) inside the loop(); moreover, it is usually not advised or even forbidden. It
is because, for every execution of the loop() statement, many other tasks, such as
handling communication, may be executed once. Making a single pass of the loop()
function infinite (e.g. implementing an infinite while(1) loop could cause starvation of
the other underlying processes the framework handles, such as network communication,
embedded protocols handling, etc.).

The book presents code and examples in the Arduino framework context for edge-class
devices and Fog-class devices (scripting). Wherever other framework is used, it will be
clearly stated. Note, following introduction to the C and C++ programming and task
handling contents are universal and can be applied to the other frameworks, whether
directly or indirectly, with some adaptation on the code level.

3. Introduction to Embedded Programming

36

3.3. Software Development Tools and Platforms

Software development in the bare metal model requires a development toolchain
installed on the developer's computer. The vendor of the MCU usually provides a set
of tools. This set frequently includes a dedicated compiler, linker, library management
tools, configuration tools, debugger software, etc. These tools are command lines in most
cases. Using a GCC [35] C/C++ compiler is also quite common. On top of it, a GUI with
a rich UI interface is built to simplify software development. Some vendors provide their
own GUIs, such as STMicroelectronics' STM32CubeIDE (image 9). In contrast, others use
already available universal code editing solutions and integrate with them, e.g. in the
form of plugins or extensions.

Vendors barely develop their own GUI solutions from scratch;
instead, they adapt existing open-source ones, e.g.
STM32CubeIDE is built on top of the Eclipse IDE [36].

Figure 9: STM32CubeIDE: Eclipse for STM32 developers

Because documentation for the command line tools composing SDK is usually available,
there are also universal solutions that enable developers to use a single GUI environment
for various tasks and microcontrollers, switching among them quickly, such as Visual
Studio Code (figure 10). Each platform requires its dedicated toolchain, anyway, and
integration with universal code editors such as the aforementioned VS Code may be
tricky. Luckily, there are tools to help with the automated installation of all required
components, such as PlatformIO [37], that we describe below.

3.3. Software Development Tools and Platforms

37

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/stm32cubeide.png?id=book%3Aiot-open2nded

Figure 10: VS Code: a universal development environment

As the Arduino programming framework became a cross-platform standard, vendors
provided low-level libraries implementing standard functionalities such as embedded
communication protocols (Serial, SPI, I2C, 1Wire) and networking communication.
Arduino, a manufacturer of popular development boards, provides an IDE (figure 11:
Arduino IDE [38]) that is intended to be an entry-level development environment. It can be
extended beyond genuine Arduino boards, e.g. with the Espressif toolchain for ESP8266
and ESP32. This software, however, is very limited in features and is suitable only for
simple projects.

3. Introduction to Embedded Programming

38

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/vscodeide.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/arduinoide.png?id=book%3Aiot-open2nded

Figure 11: Arduino IDE: an entry-level IDE for beginners

We suggest starting with VS Code and PlatformIO over Arduino
IDE, even if you're a beginner.

3.3.1. Developers Middleware and Support Tools
Several additional tools usually come with the development toolchain provided by the
hardware vendors. They include programmers (flashers, injecting firmware into the IoT
device), configuration tools, power consumption calculators, etc. Installation is not always
straightforward, and updating is tricky. Developers who use a variety of platforms (MCUs)
struggle with instant updates and browsing the web for tools, samples and libraries.
Moreover, handling libraries they use for development is time-consuming and involves
instant monitoring of changes, manual copy-paste operations on files, etc. Moreover, it
has to be done for every project individually.

PlatformIO
The solution is a developer's middleware that integrates with selected IDE
and helps to install, configure and maintain toolchains for hardware,
software development libraries, and also contains a set of additional tools
(e.g. serial port monitor, JTAG debugger, code repository integration,
collaboration tools, remote development, etc.). As mentioned above, one

example of a handy middleware for IoT and embedded development is PlatformIO. It is a
command-line toolset that provides a whole ecosystem for virtually any hardware
platform; it still uses the vendor's proprietary toolchains. It perfectly integrates with
Visual Studio Code (among others) via VS Code's extension (plugin) systems. VS Code
also works as a GUI for PlatformIO. In the following figures, we present its look and UI
when integrated with Visual Studio Code (figures 12, 13 and 14).

Figure 12: VSCode with PlatformIO: starting page

3.3. Software Development Tools and Platforms

39

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/platformio-logo.17fdc3bc.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/platformio-logo.17fdc3bc.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/pio1.png?id=book%3Aiot-open2nded

Figure 13: VSCode with PlatformIO: library management

Figure 14: VSCode with PlatformIO: toolchain management

A PlatformIO-enabled IoT project is a set of files with a platformio.ini file in the root
folder and main.cpp in the ./src/ subfolder (as, e.g. in the figure 12, project folder
tree is to the left)). The platformio.ini file describes all technical parts of the project:
the hardware platform, the method of uploading the firmware (usually via a serial port),
software libraries that are included in the code and should be automatically pulled
from the libraries repository during compilation and many other options [39]. Sample
platformio.ini file is presented in the code below:

[env:d1_mini]
platform = espressif8266
board = d1_mini
framework = arduino
upload_port = /dev/ttyUSB0

3. Introduction to Embedded Programming

40

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/pio2.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/pio3.png?id=book%3Aiot-open2nded

upload_speed = 9600
monitor_port = /dev/ttyUSB0
lib_deps =

arduino-libraries/LiquidCrystal@^1.0.7
adafruit/Adafruit Unified Sensor@^1.1.7
adafruit/DHT sensor library@^1.4.4

This code configures the ESP8266 (Espressif) hardware project, with specific developer
board D1 Mini and programming done in the “Arduino” framework development model.
Communication with the IoT device is via serial port (here /dev/ttyUSB0 for Linux or, e.g.
COM3 for Windows) and uses the same port for monitoring (serial port monitor for tracing
messages from the MCU and code).
It uses three libraries registered in the library registry for PlatformIO: LiquidCrystal,
Adafruit Unified Sensor and DHT sensor library, with explicit versions. PlatformIO's
Library Manager automatically checks for updates and proposes to update libraries to the
latest available if a version is not explicitly stated. The Library Registry in the PlatformIO
is a repository of the Gitlab project, available online [40]. Libraries are currently held per
project instead of shared between projects.
At the start of the PlatformIO GUI and then periodically, it checks for PlatformIO updates
and development toolchain updates, proposing to update them when a new version is
available.

3.3. Software Development Tools and Platforms

41

3.4. C/C++ Language Embedded Programming Fundamentals

The following sub-chapters cover programming fundamentals in C/C++, which comply
with most C/C++ notations. Those who feel comfortable in programming will find these
chapters somewhat introductory, while for those having no or little experience, it is
highly recommended to cover this introduction. This chapter and its sub-chapters target
the basics and general syntax of C/C++ programming for different platforms, including
Arduino, Espressif, Nordic, STM32, and partially for Raspberry Pi devices; however, in
any case, the programming environment configuration is different for every platform.
The Arduino programming framework is common for many MCU manufacturers of the IoT
Edge class devices in bare metal programming mode, even if it brings some overhead
and does not let the developer push the devices to their limits. To enjoy full power,
efficiency and control of the specific device, one needs to use a dedicated SDK and
Framework, but for teaching purposes and many even professional applications, Arduino
Framework is suitable and a good balance between the cost of the development and the
result.

This manual refers to the particular versions of the software
available at the moment of writing this book. Accessing
specific features may change over time along with the
evolution of the platform. Please refer to the attached
documentation (if any) and browse Internet resources to find
the latest guidance on configuring specific development
platforms when in doubt.

3.4.1. Data Types and Variables

Almost every computer program manipulates the data. Data representation in the
program is variable. In C/C++, the variable needs to be defined before using it, giving it
some name and assigning a chosen type, dependent on the kind of data. Some common
data types and how to use variables are shown below.

Data Types
Data type specifies how it is encoded and represented in the computer memory. For
example, integer numbers are binary-encoded, the texts are represented as a series of
ASCII-encoded characters, and real numbers have a particular encoding scheme that
consists of two binary numbers - mantissa and exponent. Other data types are tables
that consist of elements of the same type or structures with elements of different types.
There are plenty of different data types; some of them are predefined, but user-own types
can be defined based on existing ones. Creating a variable requires specifying its type,
which determines its place in the memory of the microcontroller and also the way it can
be used. Further, the most used ones together with examples of defining variables.

3. Introduction to Embedded Programming

42

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ byte – a numeric type of 8 bits that stores numbers from 0 to 255.

byte exampleVariable;

The example above defines a variable, reserves its memory, and assigns the memory
address to the variable name. It is also possible to give the variable the initial value as
below:

byte exampleVariable = 123;

▪ int – the integer number. Its size depends on the microcontroller class. In the case of
AVR (Arduino), it consists of 16 bits that can contain values from –32 767 to 32 768.
In ARM-based microcontrollers (like STM32), its size is 32 bits.

int exampleVariable = 12300;

▪ float – a data type for real numbers that uses 32 bits and stores numbers
approximately from –3.4 × 10^38 to 3.4 × 10^38.

float exampleVariable = 12300.546;

▪ array – a set of data of the same type that can be accessed using a serial number
or index. The index of the first element is always 0. The values of an array can be
initialized at the definition of it or set during the program's execution. In the following
example, the array of four elements with the name “first array” and data type int
has been created. The value of the array with an index of 0 will be 12, and the value
with an index of 3 will be 15.

int firstArray[] = {12,-3,8,15};

Square brackets of the array can be used to access some value in the array by index.
In the following example, the element with index 1 (that is –3) is assigned to the
secondVariable variable.

int secondVariable = firstArray[1];

An array can be quickly processed in the loop. The following example shows how to
calculate the sum of all elements from the previously defined array (for statement will
be explained in detail in the following chapters).

//The loop that repeats 4 times
int sum = 0;
for(int i = 0; i < 4; i = i + 1){

sum = sum + firstArray[i];
}

The loop in the example starts with index 0 (i = 0) and increases it by 1 while smaller
than 4 (not including). That means the index value will be 3 in the last cycle because
when the i equals 4, the inequality i < 4 is not true, and the loop stops working.

3.4. C/C++ Language Embedded Programming Fundamentals

43

▪ bool – the variables of this data type can take values TRUE or FALSE. Arduino
environment allows the following values to these variables: TRUE, FALSE, HIGH (logical
1 (+5 V)) and LOW (logical 0 (0 V)).

Data Type Conversion
Data type conversion can be done using multiple techniques – casting or data type
conversion using specific functions.

▪ Casting – the cast operator translates one data type into another type straight
forward. The desired variable type should be written in the brackets before the
variable data type, which needs to be changed. In the following example, where the
variable type is changed from float to int, the value is not rounded but truncated.
Casting can be done to any variable type.

int i;
float f=4.7;

i = (int) f; //Now it is 4

▪ Converting – byte(), char(), int(), long(), word(), float() functions are
used to convert any type of variable to the specified data type.

int i = int(123.45); //The result will be 123

▪ Converting String to float – function toFLoat() converts String type of variable
to the float. The following example shows the use of this function. If the value cannot
be converted because the String doesn't start with a digit, the returned value will be
0.

String string = "123fkm";
float f = string.toFLoat(); //The result will be 123.00

▪ Converting String to Int – function toInt() converts String type of variable to
the Int. In the following example, the use of this function is shown.

String string = "123fkm";
int i = string.toInt(); //The result will be 123

Defining New Types
Typedef Specifier
A typedef specifier can give another name for existing types or declare a new one.
Renaming types is possible, but software development frameworks already have several
aliases. It is helpful, however, when combined with enumerations, classes and structures
to give them reasonable names and re-use them later in the code to improve their
readability. We present more details on structures in the chapter Structures and Classes,
but here is an example presenting a reasonable use of the typedef specifier.

typedef struct {int x; int y;} tWaypoint; //Declare complex type named waypoint

3. Introduction to Embedded Programming

44

https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/structuresandclasses

...
//Declare a variable of the type of tWaypoint
tWaypoint wp1;

Enum Declaration
Enumerations are helpful to give meaning to the integer values and present some logic
in a code instead of putting numbers into it. It can be, e.g., the device's state, error code,
etc. In the case a new enumeration is needed, it is possible to declare one using the enum
keyword and specifying a list:

enum errorcodes {ER_OK, ER_DOWNLOAD, ER_UPLOAD, ER_NOWIFI}; //define enumeration
...
errorcodes Errorcode; //declare a variable
...
Errorcode = ER_DOWNLOAD; //assign a value

The default numbering starts with 0 (ER_OK=0) and increases by 1 with every next item on
the enumeration list. However, explicitly defining values represented by the item labels
is possible.

enum errorcodes {ER_OK=0, ER_DOWNLOAD=3, ER_UPLOAD=4, ER_NOWIFI=1};

3.4.2. Operators, Specifiers and Pointers

Operators represent mathematical, relational, bitwise, conditional, or logical data
manipulations. There are many operators in the C/C++ language. In this chapter, the
most important are presented. Logical operators will be shown in the next chapter as they
are used together with conditional statements.

Assignment Operator
▪ Assignment operator (=) – the operator that assigns the value on the right to the

variable on the assignment operator's left. The left side should represent the variable
(must be able to be modified), and the right side can be the number (constant),
variable, or expression. In the case of an expression, its value is first calculated, and
then the result is assigned to the variable on the left. The work of an assignment
operator can be seen in any of the following operation examples.

Arithmetic Operators
Arithmetic operations are used to do mathematical calculations with numbers or
numerical variables. The arithmetic operators are the following.

▪ Addition (+) – one of the four primary arithmetic operations used to add numbers.
The addition operator can add only numbers, numeric variables, or a mix of both. The
following example shows the use of the addition operator.

int result = 1 + 2; //The result of the addition operation will be 3

3.4. C/C++ Language Embedded Programming Fundamentals

45

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ Subtraction (-) – the operation that subtracts one number from another where the
result is the difference between these numbers.

int result = 3 - 2; //The result of the subtraction operation will be 1

▪ Multiplication (*) – the operation that multiplies numbers and gives the result.

int result = 2 * 3; //The result of the multiplication operation will be 6

▪ Division (/) – the operation that divides one number by another. If the result
variable has the integer type, the result will always be the whole part of the division
result without the fraction behind it. If the precise division is necessary, using the float
type of variable for this purpose is important.

//The result of the division operation will be 3
//(Only the whole part of the division result)
int result = 7 / 2;
//The result of the division operation will be 3.5
float result2 = 7.0 / 2.0;

▪ Modulo (%) – the operation that finds the remainder of the division of two numbers.

//The result of the modulo operation will be 1,
//Because if 7 is divided by 3, the remaining is 1
int result = 7 % 3;

Bitwise Operators
Bitwise operators perform operations on bits in the variable. Among them, there exist
bitwise logic operations. It means the same logic function is applied to every pair of bits
in two arguments. Bitwise or (|) means that if at least one bit is “1” at the chosen bit
position, the resulting bit will also be “1”. Bitwise and (&) means that if at least one bit is
“0”, the resulting bit is “0”. Bitwise operators shouldn't be confused with Logic Operators
(||), (&&), which operate on a single boolean logic value.

byte result = 5 | 8;
; //The operation in numbers gives the result of 13
; //in bits can be shown as follows
; // 00000101b
; // 00001000b
; // ---------
; // 00001101b

byte result = 5 & 1;
; //The operation in numbers gives the result of 1
; //in bits can be shown as follows
; // 00000101b
; // 00000001b
; // ---------
; // 00000001b

3. Introduction to Embedded Programming

46

Bitwise operators also allow shifting data left («) or right (») chosen number of bit
positions. Shifting is often used in embedded programming to access the bit at a specific
position. Shifting data one bit left gives the result of multiplication by 2, while shifting one
bit right gives the effect of dividing by 2.

byte result = 5 << 1;
; //The operation in numbers gives the result of 10
; //in bits can be shown as follows
; // 00000101b
; // 00001010b

Compound Operators
Compound operators in C/C++ are a short way of writing down the arithmetic operations
with variables. All of these operations are done on integer variables. These operands are
often used in the loops when it is necessary to manipulate the same variable in each
cycle iteration. The compound operators are the following.

▪ Increment (++) – increases the value of integer variable by one.

int a = 5;
a++; //The operation a = a + 1; the result will be 6

▪ Decrement (- -) – decreases the value of the integer variable by one.

int a = 5;
a--; //The operation a = a – 1; the result will be 4

▪ Compound addition (+=) – adds the right operand to the left operand and assigns
the result to the left operand.

int a = 5;
a+=2; //The operation a = a + 2; the result will be 7

▪ Compound subtraction (-=) – subtracts the right operand from the left operand
and assigns the result to the left operand.

int a = 5;
a-=3; //The operation a = a – 3; the result will be 2

▪ Compound multiplication (*=) – multiplies the left operand by the right operand
and assigns the result to the left operand.

int a = 5;
a*=3; //The operation a = a × 3; the result will be 15

▪ Compound division (/=) – divides the left operand with the right operand and
assigns the result to the left operand.

3.4. C/C++ Language Embedded Programming Fundamentals

47

int a = 6;
a/=3; //The operation a = a / 3; the result will be 2

▪ Compound modulo (%=) – takes modulus using two operands and assigns the
result to the left operand.

int a = 5;
//The result will be the remaining
//Part of the operation a/2; it results in 1
a%=2;

▪ Compound bitwise OR (|=) – bitwise OR operator that assigns the value to the
operand on the left.

int a = 5;
a|=2; //The operation a=a|2; the result will be 7

▪ Compound bitwise AND (&=) – bitwise AND operator that assigns the value to
the operand on the left.

int a = 6;
a&=; //The operation a=a&2; the result will be 2

& and * Operators: Pointers and References
Simple and complex types can be referred to with pointer variables. A pointer is a variable
that holds the address of the variable. The length of the pointer is equivalent to the length
of the memory address (usually 16, 32 or 64 bits). A pointer does not contain a value but
instead points to the variable (a memory) where the value is stored. A pointer variable
must be initialised and dereferenced with Address-Of and Dereferencing operators.
The following example presents a simple type declaration and the use of a pointer
variable.

& operator returns an address of a variable.
* operator dereferences a variable (it provides access to a value that the pointer variable
points to).

int n = 10; //Declare a variable of type int and initialise it with 10
int *ptr; //Declare a pointer variable.

//At this point, *ptr does not contain any address yet,
//rather some random address or null.

ptr = &n; //Assign to the pointer ptr an address of the variable n
//ptr contains now an address of the memory where
//variable n is located, not a value 10

int k; //Declare another variable
k = *ptr; //Assign k a value that is pointed by ptr

Simple type variables such as int, double, float and so on are passed to the
function arguments as values, so the original value is copied, and a copy is presented
to the function code (more on functions one can find in the Sub-programs, Functions).
Modifications to the argument do not change the original value but just a copy. This
is not the case when passing a complex type, such as an array, as an argument. The

3. Introduction to Embedded Programming

48

https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/functions

importance of pointers is not to be underestimated in this case: you declare a pointer
pointing to the array's first element and pass it to the function. Then, by modifying the
pointer value (an address), it is possible to refer to the following elements of the array. In
this case, any modification to the referred array element modifies an original one, so the
change in the value is instant. It does not need a return variable from a function.

3.4.3. Program Control Statements, Logical operators

It is essential to understand that if no statements change the normal program flow,
the microcontroller executes instructions one by one in the order they appear in the
source code (from the top - to the down direction). Control statements modify normal
program flow by skipping or repeating parts of the code. Often, to decide if the part of
the code should be executed or to choose one of the number of possible execution paths,
conditional statements are used. For repeating the part of the code, loop statements can
be used.

Conditional Statement
if is a statement that checks the condition and executes the following statement if the
condition is TRUE. There are multiple ways to write down the if statement:

//1st example
if (condition) statement;

//2nd example
if (condition)
statement;

//3rd example
if (condition) { statement; }

//4th example
if (condition)
{

statement;
}

The version with curly braces is used when there is a need to execute part of the code
that consists of more than a single statement. Many statements taken together with a
pair of curly braces are treated as a single statement in such cases. When both TRUE and
FALSE cases of the condition should be viewed, the else part should be added to the if
statement in the following ways:

if (condition) {
statement1; //Executes when the condition is true

}
else {

statement2; //Executes when the condition is false
}

If more conditions should be viewed, the else if part is added to the if statement:

3.4. C/C++ Language Embedded Programming Fundamentals

49

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

if (condition1) {
statement1; //Executes when the condition1 is true

}
else if (condition2) {

statement2; //Executes when the condition2 is true
}
else {

statement3; //Executes in all other cases
}

For example, when the x variable is compared and when it is higher than 10, the
digitalWrite() method executes.

if (x>10)
{

//Statement is executed if the x > 10 expression is true
digitalWrite(LEDpin, HIGH)

}

Logical Operators
To allow checking different conditions, logical operators are widely used with the
condition statement if described above.

Comparison Operators

There are multiple comparison operators used for comparing variables and values. All
of these operators compare the variable's value on the left to the value on the right.
Comparison operators are the following:

▪ == (equal to) – if they are equal, the result is TRUE, otherwise FALSE,
▪ != (not equal to) – if they are not equal, the result is TRUE, otherwise FALSE,
▪ < (less than) – if the value of the variable on the left is less than the value of the

variable on the right, the result is TRUE, otherwise FALSE,
▪ < = (less than or equal to) – if the value of the variable on the left is less than or equal

to the value of the variable on the right, the result is TRUE, otherwise FALSE,
▪ > (greater than) – if the value of the variable on the left is greater than the value of

the variable on the right, the result is TRUE, otherwise FALSE,
▪ > = (greater than or equal to) – if the value of the variable on the left is greater than

or equal to the value of the variable on the right, the result is TRUE, otherwise FALSE.

Examples:

if (x==y){ //Equal
//Statement

}

if (x!=y){ //Not equal
//Statement

}

if (x<y){ //Less than

3. Introduction to Embedded Programming

50

//Statement
}

if (x<=y){ //Less than or equal
//statement

}

if (x>y){ //Greater than
//Statement

}

if (x>=y){ //Greater than or equal
//Statement

}

Boolean Operators

The Boolean logical operators in C/C++ are the following:

▪ ! (logical NOT) – reverses the logical state of the operand. If a condition is TRUE the
logical NOT operator will turn it to FALSE and the other way around,

▪ && (logical AND) – the result is TRUE when both operands on the operator's left and
right are TRUE. If even one of them is FALSE the result is FALSE,

▪ || (logical OR) – the result is TRUE when at least one of the operands on the operator's
left and right is TRUE. If both of them are FALSE, the result is FALSE.

Examples:

//Logical NOT
if (!a) { //The statement inside if will execute when the a is FALSE

b = !a; //The reverse logical value of a is assigned to the variable b
}

//Logical AND
//The statement inside if will execute when the
//Values both of the a and b are TRUE
if (a && b){

//Statement
}

//Logical OR
//The statement inside if will execute when at least one of the
//a and b values are TRUE
if (a || b){

//Statement
}

Switch Case Statement
A switch statement similar to the if statement controls the flow of a program. The code
inside switch is executed in various conditions. A switch statement compares the values
of a variable to the specified values in the case statements. Allowed data types of the
variable are int and char. The break keyword exits the switch statement.

Examples:

3.4. C/C++ Language Embedded Programming Fundamentals

51

switch (x) {
case 0: //Executes when the value of x is 0
// statements
break; //Goes out of the switch statement

case 1: //Executes when the value of x is 1
// statements
break; //Goes out of the switch statement

default: //Executes when none of the cases above is true
// statements
break; //Goes out of the switch statement

}

3.4.4. Loops

Loops are critical to control flow structures in programming. They allow executing
statements or some part of the program repeatedly to process elements of data tables
and texts, making iterative calculations and data analysis. In the world of
microcontrollers, where sometimes there is no operating system, the whole software
works in the main loop called a super loop. It means the program never ends and works
until the power is off.
This is clearly visible in the Arduino programming model, with one part of the code
executed once after power-on setup(), and another executed repeatedly loop(). In C/
C++, there are three loop statements shown in this chapter.

for
for is a loop statement that specifies the number of execution times of the statements
inside it. Each time all statements in the loop's body are executed is called an iteration.
In this way, the loop is one of the basic programming techniques used for all programs
and automation in general.

The construction of a for loop is the following:

for (initialization ; condition ; operation with the cycle variable) {
//The body of the loop

}

Three parts of the for construction are the following:

▪ initialisation section usually initialises the value of the cycle variable that will be
used to iterate the loop; the initialisation value is ofter 0 but can be any other value,

▪ condition allows managing the number of loop iterations; the statements in the body
of the loop are executed when the condition is TRUE,

▪ operation with the cycle variable specifies how the cycle variable is modified
every iteration (incremented, decremented); allows defining the number of loop
iterations.

The example of the for loop:

3. Introduction to Embedded Programming

52

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

for (int i = 0; i < 4; i = i + 1)
{

digitalWrite(13, HIGH);
delay(1000);
digitalWrite(13, LOW);
delay(1000);

}

On the initialisation of the for loop, the cycle variable i = 0 is defined. The condition
states that the for loop will be executed while the variable i value will be less than 4
(i < 4). In operation with the cycle variable, it is increased by 1 each time the loop is
repeated.

In the example above, the Arduino function digitalWrite is used. It sets the logical state
high or low at the chosen pin. If an LED is connected to pin 13 of the Arduino board, it will
turn on/off four times.

while
while loop statement is similar to the for statement but does not contain the cycle
variable. Because of this, the while loop allows executing a previously unknown number
of iterations. The loop management is realised using only condition that needs to be
TRUE for the next cycle to execute.

The construction of the while loop is the following:

while (condition is TRUE)
{

//The body of the loop
}

That way, the while loop can be used as a good instrument for the execution of a
previously unpredictable program. For example, if it is necessary to wait until the signal
from pin 2 reaches the defined voltage level = 100, the following code can be used:

int inputVariable = analogRead(2);
while (inputVariable < 100)
{

digitalWrite(13, HIGH);
delay(10);
digitalWrite(13, LOW);
delay(10);
inputVariable = analogRead(2);

}

In the loop above, the LED that is connected to pin 13 of the Arduino board will be turned
on/off until the signal reaches the specified level.

do...while
The do…while loop works similarly to the while loop. The difference is that in the while
loop, the condition is checked before entering the loop, but in the do…while, the condition
is checked after the execution of the statements in the loop, and then if the condition is
TRUE the loop repeats. As a result, the statements inside the loop will execute at least
once, even if the test condition is FALSE.

3.4. C/C++ Language Embedded Programming Fundamentals

53

The construction of a do while loop is the following:

do {
//The body of the loop

} while (a condition that is TRUE);

If the same code is taken from the while loop example and used in the do…while loop,
the difference is that the code will execute at least once, even if the inputVariable value
is more than or equal to 100. The example code:

int inputVariable = analogRead(2);
do {

digitalWrite(13, HIGH);
delay(10);
digitalWrite(13, LOW);
delay(10);
inputVariable = analogRead(2);

} while (inputVariable < 100);

3.4.5. Sub-programs, Functions

In many cases, the program grows to a size that becomes hardly manageable as a single
unit. It isn't easy to navigate through the code that occupies many screens. In such a
situation, subprograms can help. Subprograms are named functions in C and C++; while
they are associated with an object, they are called methods (in this chapter, the name
function will be used). The function contains a set of statements that usually form some
logical part of the code that can be separately tested and verified, making the whole
program easy to manage. Grouping many functions by creating a library stored in a
separate file is possible. This is how external libraries are constructed.

Functions
Functions are the set of statements that are always executed when the function is called.
A function can accept arguments as input data and return the resulting value. Two
functions from the Arduino programming model mentioned before are already known –
setup() and loop(). The programmer usually tries to make several functions containing all
the statements and then calls them in the setup() or loop() functions.

The structure of the function is as follows:

type functionName(arguments) //A return type, name, and arguments of the function
{

//The body of a function – statements to execute
}

For example, a function that periodically turns on and off the LED can look like this:

void exampleFunction()
{

digitalWrite(13, HIGH); //the LED is ON

3. Introduction to Embedded Programming

54

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

delay(1000);
digitalWrite(13, LOW); //the LED is OFF
delay(1000);

}

The example above shows that the return type of aexampleFunction function is void,
which means the function does not return any value. This function also does not have any
arguments because the brackets are empty.

This function should be called inside the loop() function in the following way:

void loop()
{

exampleFunction(); //the call of the defined function inside loop()
}

The whole code in the Arduino environment looks like this:

void loop()
{

exampleFunction(); //the call of the defined function inside loop()
}

void exampleFunction()
{

digitalWrite(13, HIGH); //the LED is ON
delay(1000);
digitalWrite(13, LOW); //the LED is OFF
delay(1000);

}

It can be seen that the function is defined outside the loop() or setup() functions.

When some specific result must be returned as a result of a function, then the function
return type should be indicated, for example:

//the return type is "int"
int sumOfTwoNumbers(int x, int y)
{

//the value next to the "return" should have the "int" type;
//this is what will be returned as a result.
return (x+y);

}

In the loop(), this function would be called in the following way:

void loop()
{

//the call of the defined function inside the loop()
int result = sumOfTwoNumbers(2, 3);

}

Built-in functions
Every programming SDK, including Arduino IDE, comes with several ready-made

3.4. C/C++ Language Embedded Programming Fundamentals

55

functions that help develop applications, significantly reducing the effort and time of
writing programs. These functions are written to handle inputs and outputs, process
texts, communicate using serial ports, manipulate bits and bytes, and perform
mathematical calculations. Refer to Arduino or other SDK documentation for details.

Library functions
The popularity of microcontrollers and embedded programming caused the growth of
communities of enthusiasts who create a vast of helpful software. This usually comes
as a set of functions designed to handle specific tasks, e.g. interfacing with a family of
graphical displays or communicating using the chosen protocol. Functions created for
one purpose are grouped, forming the library. The number of libraries and their different
version is so significant that software developers use a particular library manager to
ensure that libraries are up-to-date or keep them in stable versions.

Function handlers
In the MCU world, is is common to use libraries that require a user (software developer)
to implement a specific part of the code that is later automatically called by the library
routines. Those functions are frequently called handlers and enable developers to inject
their actions for a predefined set of activities without modifying library code. For this
reason, the library contains a placeholder variable that can be assigned an executable
code (a function body). This is handled with the use of pointers. A sample function
handler variable is presented in the following code, along with the user function
definition, assignment to the handler variable and a call to the handler:

int (*hUserImplementedFunction)(int); //Function handler variable
//(no code is here;
//it is just a pointer to the code,
//currently NULL, pointing to "nowhere"

...
int fMulx2(int a) { //User's implementation of the function.

return (2*a); //Multiply the argument 'a' value by 2
//and return it to the callee.

} //Note: argument types and return types
//must match with the variable above

...

hUserImplementedFunction = fMulx2; //assign a function to the handler
//starting from now,
//hUserImplementedFunction
//contains an address of the fMulx2 function

...
int j;
if (hUserImplementedFunction!=NULL) //check if the handler is not null

//to avoid NULL pointer exception and code hang

3. Introduction to Embedded Programming

56

j = hUserImplementedFunction(10); //call a handler, j is 20 now

In the example above, there is no “&” (address of) operator
used when assigning a function code to the handler that is a
pointer. It is because, by default, complex types as functions
are referenced by reference (a pointer), not by value: fMulx2
represents an address where the code starts.

Using a function handler is common for asynchronous actions,
where user code is notified by the handler (usually low-level
library code about the action to happen, e.g. data has been
sent via the network interface). This method is similar to
interrupts, as described later. Using function pointers
(handlers) enables code to modify routines handling actions
dynamically by substituting the addresses. Libraries
frequently implement handler variables as lists or arrays
instead of singular values, enabling adding more than one
action (handler) to be called by the library.

3.4.6. Structures and Classes

Structures and classes present complex data types, definable by the developer. Not
all C/C++ programming environments provide support for classes (e.g., STM32 in HAL
framework mode does not), but luckily, the Arduino framework supports it. Structures,
conversely, are part of the C language definition and are present in almost every
implementation of software frameworks for IoT microcontrollers.

Structures
In C and C++, a structure is a user-defined data type that allows you to combine different
types of variables under a single name. A structure primarily groups related variables,
forming a complex data type. A custom data structure (type) that can hold multiple
variables, each with its data type. These variables, called members or fields, can be of
any built-in or user-defined type, including other structures. The sample named structure
(equivalent to the complex type), variable declaration and use of member fields are
presented below:

struct address {
String city;
String PO;
String street;
double longitude;

3.4. C/C++ Language Embedded Programming Fundamentals

57

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

double latitude;
};
...
address adr1;

Note it is also possible to declare a structure variable directly without defining a type:

struct {
String city;
String PO;
String street;
double longitude;
double latitude;

} adr2, adr3;

Structures with type definitions are common when authoring libraries to let library users
be able to declare new variables on their own, simply using a type.

Manipulating Structure's Data
Access to the fields of the structure's member variables (short: members, fields) is
possible using the “.” (dot) operator.

adr1.city = "Gliwice";
adr2.city = "Oslo";
adr3.street = "Lime Street";

The structure's data can be initialised member by a member or at once using the
simplified syntax. Order is meaningful, and types need to fit the definition (C++ only):

adr3 = {"Gliwice", "44-100", "1 Lime", -2.973083901947872, 53.401615049766406 };

In C++, structures can also have member functions that manipulate the data (in C, they
cannot). That is not so far from the Classes idea described in the following chapter. In
the case of using C (or poor implementation of C++ that does not support classes nor
member functions, e.g. STM32), it is common to prepare a set of data handling functions
that operate on the structure referenced with a pointer. A common rule of thumb is the
structure is the first argument in the function:

struct calcdata
{

double x,y;
} args;

//Adds x and y of the "arguments" structure
double fCalcDataAdd(calcdata *arguments){

return (arguments->x + arguments->y);
}
//Multilies x and y of the "arguments" structure
double fCalcDataMul(calcdata *arguments){

return ((arguments->x)*(arguments->y));
}
//Sets x and y of the "arguments" structure
void fCalcDataSet(calcdata *arguments, double px, double py){

arguments->x = px;

3. Introduction to Embedded Programming

58

arguments->y = py;
}

In the examples above, we use a “→” dereference operator to access the member fields
by using the pointer to the structure rather than the structure itself.

Sample use of the functions is then:

args = {2,7}; //initialise structure x=2, y=7
fCalcDataSet(&args, 12,12); //reinitialise structure x=12, y=12
int z = fCalcDataAdd(&args); //z equals to 24 now

Classes
Classes were introduced in C++ to extend structures encapsulating data and methods
(functions) to process this data. A method presented above in the structure context
brings an overhead with a need to pass a pointer to the structure for each call. Moreover,
it makes access levels tricky, e.g. when you do not want to expose some functions but
use them for internal data processing. Thus, classes can be considered as an extension
of the structures.

Classes are an important part of IoT programming as they
bring an idea of the digital twin to low-level programming:
a class used to represent a single piece of hardware, e.g. a
sensor and provide its current state, access to the data it
grabs and gives access to the operations on the hardware.
Thus, in most IoT projects, each device external to the MCU
that composes an IoT device is represented by one or more
classes on the software side.

Classes are legit only for C++ and not in regular C
implementations.

Sample class definition is presented below:

class Calculator
{

public: //you can access this part
int x,y;

Calculator() { //Default constructor
clear();

}
Calculator(int px, int py) { //Another constructor

x=px;
y=py;

}
~Calculator(){} //This is dummy destructor

3.4. C/C++ Language Embedded Programming Fundamentals

59

int Add(){ return x+y; }
int Mul(){ return x*y; }
void setX(int px){ x=px; }
void setY(int py){ y=py; }

private: //that part is private, and you cannot access it
void clear(){

x=0; y=0;
}

};

The code above declares a new type, Calculator, with member fields (members in short)
x and y and methods (functions) Calculator, Add, Mul, setX and setY. Some are
marked as private: and accessible only from the code of the functions (methods) within
the class; some are exposed to external users when marked as public:.

Constructors
There are “special” functions whose name is equivalent to the class name in this example
above. Those are called constructors and are executed once the object of the class type
is instantiated:

Calculator calc1=Calculator(2,15);

The above code instantiates an object calc1 of the class Calculator and calls the
constructor explicitly Calculator(int px, int py). The other constructor,
Calculator(), is the default one, and if not explicitly called by the code developer, it is
automatically called when the object is instantiated.
There can be multiple constructors, and the one executed is selected based on the
arguments set.

Destructor
A destructor is called automatically when an object's lifetime is to end. It allows, e.g. to
release resources, disconnect open connections, and, in general, do some cleanup before
the object is gone. The destructor function in the example above does nothing and is not
obligatory in the code. Destructor name starts with a ~ sign (tilde) and has the same
name as a class (or constructor):

~Calculator(){} //This is dummy destructor

In the embedded world, explicitly implemented destructors
releasing allocated memory are rare as for the safety of the
software, dynamic allocation of the memory is rather to be
avoided; thus, destructors are eventually related to the
network connections more than memory management.

Members
Member fields can be of any type. When marked as private they are accessible only from
the code of the constructors, destructor and methods within the class. When public,
one can reference them using a “.” (dot) operator, as in the case of the structures.
When using a pointer to the class instance (object) rather than an instance itself (quite

3. Introduction to Embedded Programming

60

common), a “→” operator works as in the case of structures.

Methods
A method can have any name other than reserved (e.g. for constructors and destructor).
Methods marked as public are available for the object user and are referenced similarly
to member fields (“.” and “→” operators). private methods are not exposed externally;
their purpose is to be called from another method internally. Sample use of methods is
presented below:

//continuing initialisation above: calc1.x=2, calc1.y=15
int z = calc1.Add(); //z=17
calc1.setX(10); //calc1.x=10
calc1.setY(20); //calc1.y=20
z = calc1.Mul(); //z=200

Class inheritance
Classes can be inherited. This mechanism enables the real power of C++, where existing
models (classes) can be extended with new logic without a need to rewrite and fork
existing source code. In the example above, the Calculator class misses some features,
such as subtracting. A code below defines a new type BetterCalculator that inherits
from the Calculator class, using “:” operator:

class BetterCalculator:public Calculator
{

public:
BetterCalculator() {
}
BetterCalculator(int px, int py):Calculator(px,py) {
}
int Sub(){return x-y;}

};

Members x and y are in the Calculator class. Inheritance before C++ release 11
requires explicit constructor definitions, as in the example above. We use public
inheritance to give access to all public methods in the base Calculator class available
from within the level of the BetterCalculator class. Note the public keyword in the
class definition: class BetterCalculator:public Calculator.
Instantiation and use are similar to the presented ones in the previous examples:

BetterCalculator calc2=BetterCalculator(10,6);
//BetterCalculator->Calculator->x=10, y=6

...
z = calc2.Sub(); //z=4
z = calc2.Add(); //z=16 - you can use the underlying code in the Calculator

//class without a need to rewrite it again

The description above does not deplete all features of C++ Object Oriented
Programming. Please note, however, that in the case of the embedded C++, their
implementation can be limited and may not contain all the features of the modern,
standard C++ patterns.

A special note on the libraries with separate definitions (header) and
implementation (body)
Many libraries come with a class definition in the header file (.h) and its implementation in

3.4. C/C++ Language Embedded Programming Fundamentals

61

the code file (.cpp). This is convenient for separating use patterns and implementations.
A special operator, “::” (double colon), is used in the implementation to refer the code to
the definition in the header file.
The sample header file myclass.h with the aforementioned Calculator class is present
below. It contains only the class definition but does not contain any implementing code.

#ifndef h_MYCLASS
#define h_MYCLASS
class Calculator{

public: //you can access this part
int x,y;

Calculator(); //Default constructor
Calculator(int px, int py); //Another constructor
~Calculator(); //This is dummy destructor
int Add();
int Mul();
void setX(int px);
void setY(int py);

private: //that part is private,
//and you cannot access it

void clear();
};
#endif

The implementation code refers to the class definition in the header:

#include "myclass.h"

Calculator::Calculator() {}
Calculator::Calculator(int px, int py) { x=px; y=py; }
Calculator::~Calculator(){}
int Calculator::Add(){ return x+y;}
int Calculator::Mul(){ return x*y; }
void Calculator::setX(int px){ x=px; }
void Calculator::setY(int py){ y=py; }
void Calculator::clear(){ x=0; y=0; }

3.4.7. Timing

Writing code that handles interrupts from internal peripherals, for example, timers, is
possible but depends strongly on the hardware.

Time-related functions
Because this chapter presents just an introduction to programming, some essential
timing functions will be shown.

Delay
The simplest solution to make functions work for a particular time is to use the delay()
[41] function. delay() function halts program execution for the time specified as the
argument (in milliseconds).

The blinking LED code is a simple demonstration of delay functionality:

3. Introduction to Embedded Programming

62

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

digitalWrite(LED_BUILTIN, HIGH); //Turn the LED on
delay(1000); //Stop program for a second
digitalWrite(LED_BUILTIN, LOW); //Turn the LED off
delay(1000); //Stop program for a second

Using delay() is convenient but has a severe drawback: the algorithm is halted, and only
interrupts (or tasks in the background) are executed. The main algorithm is present in the
figure 15. Some tasks, e.g. receiving serial transmissions, networking, and outputting set
PWM values, continue to work as background tasks, using interrupts or task management
(such as FreeRTOS).

Figure 15: Blocking call: use of the delay()

The alternative to using delay is to switch to the non-blocking method, based on timing
with the use of millis() as presented below.

Millis
millis() [42] returns the number in milliseconds since MCU began running the current
program. Note it has nothing to do with a real-time clock, as most microcontrollers
and development boards do not have one. The readings are 32-bit and will roll over
in approximately 49 days. millis() can be used to replace delay() but needs some
additional coding. Instead of blocking the algorithm, one can check if the desired time
has passed. Meanwhile, it is possible to handle other tasks instead of blocking execution,
as presented in the algorithm in figure 16.

3.4. C/C++ Language Embedded Programming Fundamentals

63

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/timing-page-1.drawio.png?id=book%3Aiot-open2nded

Figure 16: Non-blocking call: use of the millis()

Here is an example code of blinking LED using millis(). Millis is used as a timer. Every
new cycle time is calculated since the last LED state change. If the time passed is equal
to or greater than the threshold value, the LED is switched:

//Unsigned long should be used to store time values
//as the millis() returns a 32-bit unsigned number
//Store value of current millis reading

unsigned long currentTime = 0;
//Store value of time when last time the LED state was switched

unsigned long previousTime = 0;

bool ledState = LOW; //Variable for setting LED state

const int stateChangeTime = 1000; //Time at which switch LED states

void setup() {
pinMode (LED_BUILTIN, OUTPUT); //LED setup

}

void loop() {
currentTime = millis(); //Read and store current time

//Calculate passed time since the last state change
//If more time has passed than stateChangeTime, change the state of the LED
if (currentTime - previousTime >= stateChangeTime) {

3. Introduction to Embedded Programming

64

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/timing-page-2.drawio.png?id=book%3Aiot-open2nded

previousTime = currentTime; //Store new LED state change time
ledState = !ledState; //Change LED state to oposite
digitalWrite(LED_BUILTIN, ledState); //Write current state to LED

}
}

Sleep Modes
Some IoT-dedicated microcontrollers have special features such as sleep modes that
hold program execution for a predefined time or unless an external trigger occurs. This
can be used for periodic, time-based activities. Its side effect is energy efficiency. The
model of this behaviour and its features are very vendor-specific and vary much: e.g.
Espressif MCUs have the only option to restart the code. At the same time, STM32 can
hold execution and then continue. Because of the variety of models, modes and features,
we do not present here any specific solution but rather a general idea.

3.4.8. Digital ports, reading inputs, outputting data

Every microcontroller has many pins that can be used to connect external electronic
elements. In the examples shown in previous chapters, LED was used. Such LED can be
connected to a chosen General Purpose Input Output (GPIO) pin and can be controlled
by setting a HIGH or LOW state. Below are some details of the functions that allow
the manipulation of GPIOs using the Arduino framework. In the next chapter, analogue
signals will be considered.

Digital I/O
Microcontrollers' digital inputs and outputs allow for connecting different sensors and
actuators to the board. Digital signals can take two values – HIGH(1) or LOW(0). These
states correspond to high voltage (usually corresponding to the power supply voltage of
the microcontroller) and low voltage (around 0V). These inputs and outputs are used in
applications when the signal can have only two states.

Notice that the voltage the microcontroller is powered with can
be different (usually lower) than the voltage provided directly
to the board. For example, the ATmega microcontroller on
the Arduino Uno board is powered with 5V, while the board
itself can be powered from an external source providing 7-12V.
Other microcontrollers require different voltages, e.g. Espressif
3.3V. Refer to the device manual for a valid range of voltages.

pinMode()

The function pinMode() is essential to indicate whether the specified GPIO pin will behave
like an input or an output and may also control special features. This function does not
return any value. Usually, the mode of a pin is set in the setup() function of a program –
only once, during program initialisation.

3.4. C/C++ Language Embedded Programming Fundamentals

65

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

The syntax of a function is the following:

pinMode(pin, mode);

The parameter pin is the number of the pin.

The parameter mode can have three different values – INPUT, OUTPUT, INPUT_PULLUP,
depending on whether the pin will be used as an input or an output. The INPUT_PULLUP
mode turns on the internal pull-up resistor between the power supply and the pin itself.
It ensures that if the pin remains unconnected, the logic state will be stable and equal to
HIGH. More about pull-up resistors can be found on the Arduino homepage [43].

Most MCUs are pretty flexible in the configuration and use
of GPIOS. There are some special GPIOs, however. Some of
them cannot work as inputs or outputs or do not have internal
pull-up resistors to enable them. Refer to the technical
documentation of the hardware you use before setting up
your configuration and external devices like sensors, buttons
and applications. Some of the GPIOs are also predefined for
communication protocols such as Serial, I2C, SPI, etc.

digitalWrite()

The function digitalWrite() writes a HIGH or LOW value to the pin. This function is used for
digital pins, such as turning on/off LEDs. This function also does not return any value.

The syntax of a function is the following:

digitalWrite(pin, value);

The parameter pin is the number of the pin. The parameter value can take values HIGH or
LOW. If the mode of the pin is set to the OUTPUT, the HIGH sets voltage to power supply
voltage and LOW to 0 V.

Using this function for pins set to have the INPUT mode is also possible. In this case, HIGH
or LOW values enable or disable the internal pull-up resistor.

digitalRead()

The function digitalRead() works in the opposite direction than the function digitalWrite().
It reads the pin's value that can be either HIGH or LOW and returns it.

The syntax of a function is the following:

digitalRead(pin);

The parameter pin is the number of the pin.

On the opposite of the functions viewed before, this one has the return type, and it can

3. Introduction to Embedded Programming

66

take a value of HIGH or LOW.

In the code below, the button connected to pin 3 controls the LED connected to pin 4.

#define BUTTON_pin 3
#define LED_pin 4

void setup() {
pinMode(LED_pin, OUTPUT);
pinMode(BUTTON_pin, INPUT_PULLUP);

}

bool state;

void loop() {
state = digitalRead(BUTTON_pin); //reading digital state of the input
digitalWrite(LED_pin, state); //writing state back to the output

}

3.4.9. Manipulating analogue signals

The analogue inputs and outputs are used when the signal can take a range of values,
unlike the digital signal that takes only two values (HIGH or LOW).

Analog input
For measuring the analogue signal, microcontrollers have built-in analogue-to-digital
converter (ADC) that returns the digital value of the voltage level. Usually, the binary
number corresponds to the input voltage, not the value in Volts. The number of bits of
the output value depends on the accuracy and internal construction of the converter and
usually varies between 8 and 12.

analogRead()

The function analogRead() is used for analogue pins (A0, A1, A2, etc.) and reads the value
on the analogue pin.

The syntax of a function is the following:

analogRead(pin);

The parameter pin is the pin's name whose value is read.

The return type of the function is the integer value. On the Arduino Uno boards, it ranges
between 0 and 1023. The reading of each analogue input takes around 100 ms.

Not every pin can be used as an analogue input. Read the
documentation of the chosen development board for details.

3.4. C/C++ Language Embedded Programming Fundamentals

67

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Analog output
Unlike analogue input, the analogue output does not generate varying voltage directly on
the pin. In general, it uses the technique known as (Pulse Width Modulation (PWM)) that
generates a high/low square signal of stable frequency but varying duty cycle (ratio of
active and passive periods of the signal). Details are described later in the book. Because
the PMW signal can provide different average power to the external element, e.g. LED, it
can be considered analogue output.

analogWrite()

The function analogWrite() is used to write an analogue value of the integer type as an
output of the pin. An example of use is turning on/off the LED with various brightness
levels or setting different speeds of the motors. The value written to the pin stays
unchanged until the next value is written to the pin.

The syntax of a function is the following:

analogWrite(pin, value);

The parameter pin is the number of the pin.

The parameter value is the PWM signal value that can differ from 0 (off) to 255 (100%
on).

This function does not have the return type.

Because an internal timer often generates PWM output, not
every pin can be used as analogue output. Read the
documentation of the chosen development board for details.

The following example shows reading an analogue value from the A0 input of an Arduino
Uno board and writing the analogue value to the output that can control the intensity of
the LED.

#define LED_pin 3 //the pin number is chosen to support PWM generation

void setup() {
pinMode(LED_pin, OUTPUT);

}

int value; //variable that holds the result of analogue reading

void loop() {
value = analogRead(A0); //analogRead on Arduino Uno returns the value 0-1023
value = value >> 2; //it should be converted to the value 0-255
analogWrite(LED_pin, value); //writing converted value to PWM output

}

3. Introduction to Embedded Programming

68

3.4.10. Interrupts

Interrupt is a signal that stops the normal execution of a program in the processor and
starts the function assigned to a specific source. This function is called Interrupt Service
Routine (ISR) or interrupt handler. The ISR can be recognized as a task with higher priority
than the main program. Interrupt signals can be generated by the external source, like a
change of value on the pin, and by the internal source, like a timer or any other peripheral
device. When the interrupt signal is received, the processor stops executing the code and
starts the ISR. After completing the interrupt handler, the processor returns to the normal
program execution state.

ISR should be as short as possible; good practice is avoiding delays and long code
sequences. Suppose there is a need to trigger the execution of a long part of the
code with an incoming interrupt signal. In that case, the good practice is to define
the synchronization variable, modify this variable in the ISR with a single instruction,
and handle all other steps in the main program. The interrupt handler does not have
arguments and does not return any value, so its type is void. To ensure fast execution of
the programs, some of the Arduino functions do not work or behave differently in the ISR;
for example, the delay() function does not work inside the ISR. Variables used in the ISR
must be declared as volatile.

Interrupts are used to detect critical real-time events which occur during normal code
execution of the code. ISR is executed only when there is a need to do it.

Polling vs. interrupts
Interrupts can help in efficient data transmission. Using interrupts and checking if some
situation occurred periodically is unnecessary. Such continuous checking is named
polling. For example, a serial port interrupt is executed only when new data comes
without polling the incoming buffer in a loop. This approach saves the processor time and,
in many situations, creates code that is more energy efficient.

Interrupt handling example
Because interrupts need support from the hardware layer of the microcontroller, the
availability of specific interrupt sources depends heavily on the microcontroller model.
For example, different Arduino models have different external interrupt pin availability. In
most Arduino boards, pins numbered 2 and 3 can be used for interrupts; in Arduino Uno,
only these two, while in ESP32 and STM32, almost any digital pin is valid.

Very often, interrupts are used together with hardware timers to generate stable
frequency signals. It ensures accurate timing independent of the main loop content and
delays. Because internal peripherals are very different for different microcontrollers in
this chapter, the example for the external interrupt is shown.

The function attachInterrupt(digitalPinToInterrupt(pin), ISR, mode) is called to
attach an interrupt to the handler. This function has 3 arguments.

1. pin – the pin number where the interrupt signal-generating device will be attached.
2. ISR – the name of an ISR function.

3.4. C/C++ Language Embedded Programming Fundamentals

69

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

3. mode – defines when an interrupt signal is triggered. There are five basic mode values:
▪ LOW – interrupt is triggered when the pin value is LOW,
▪ HIGH – interrupt is triggered when the pin value is HIGH,
▪ RISING – interrupt is triggered when the pin value is changed from LOW to HIGH,
▪ FALLING – interrupt is triggered when the pin value is changed from HIGH to LOW,
▪ CHANGE – interrupt is triggered when the pin value is changed in any direction.

The example program that uses external interrupt:

volatile bool button_toggle = 0; //A variable to pass the information
//from ISR to the main program

void setup() {
pinMode(13,OUTPUT); //Define LED pin
pinMode(2,INPUT_PULLUP); //Define button pin
attachInterrupt(digitalPinToInterrupt(2),ButtonIRS,FALLING);

//Attach interrupt to button pin
}

void ButtonIRS() { //IRS function
button_toggle =!button_toggle;

}

void loop() {
digitalWrite (13,button_toggle);

}

In this example, the code needed to handle the interrupt signal is just one instruction.
Still, it shows how to use the synchronization variable to pass information from ISR to the
main program, keeping the ISR very short.

3.4.11. Programming patterns

This chapter presents some programming templates and fragments of the code that
are common in embedded systems. Some patterns, such as non-blocking algorithms, do
not use delay(x) to hold program execution but use a timer-based approach instead.
It has also been discussed in other chapters, such as in the context of timers Timing or
interrupts Interrupts.

Tracing vs Debugging - Serial Ports
Almost any MCU has a hardware debugging capability. This complex technique requires
an external debugger using an interface such as JTAG. Setting up hardware and software
for simple projects may not be worth a penny; thus, the most frequent case is tracing
over debugging. Tracing uses a technique where the Developer explicitly sends some
data to the external device (usually a terminal, over a serial port, and eventually a
display) that visualises it. The Developer then knows the variables' values and how the
algorithm runs. The use of the serial port is common because this is the one that is most
frequently used for programming. Thus, it can be used in reverse for tracing. For this
reason, Arduino Framework implements a singleton object Serial present in every code.

3. Introduction to Embedded Programming

70

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/timing
https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/interrupts

It is implemented by each Arduino Framework vendor at the level of the general library
with Arduino Framework.
Note to use a Serial, it is obligatory to initialise it using the Serial.begin(x) method,
providing the correct bps, where x is a transmission speed (rate) that suits the rate
configured in the terminal. The most common rates are 9600 (default) and 115200, but
other options are possible. On the terminal side, configuration is usually done in the
menu or a configuration file, such as in the case of the platformio.ini file. Calling
Serial.begin(x) is usually done as one of the first actions implemented in the Setup()
function of the application code:

void setup(){
delay(100);
Serial.begin(115200);
Serial.println();
...

}

A rule of thumb is that after programming and during a boot,
every MCU drops some garbage to the serial buffer. That is
visualised as several random characters in the terminal. To
easily distinguish the tracing from the garbage, it is advised to
put some delay(100) at the beginning of the code and drop
one or two “new line” characters to scroll garbage up using
dummy println() call (once or twice is usually enough).

The Serial object has several handy methods that can help represent various variable
types in a textual form to be sent via a serial port to the terminal. The most common are:

▪ Serial.print(x) where x is any simple type available in the Arduino Framework,
such as integers and floats, but also visualises arrays of characters and String
objects.

▪ Serial.println(x) prints as above but adds the end of line/newline character by the
end of the transmission. Note that the Linux style is used in Arduino, so only ASCII 13
character is sent.

Interfacing with the Device - Serial Port
The serial port and a class Serial handling the communication are bi-directional. It
means one can send a message from the MCU to the terminal and the opposite. This
can be used as a simple user interface. All configuration above steps to ensure seamless
cooperation of the MCU serial interface and terminal (application) are also in charge here.
As data is streamed byte by byte, it is usually necessary to buffer it. Technically, the
serial port notifies the MCU every time a character comes to the serial port using the
interrupts. Luckily, part of the job is done by the Serial class: all characters are buffered
in an internal buffer, and one can check their availability using Serial.available(). This
function returns the number of bytes received so far from the external device (here, e.g.

3.4. C/C++ Language Embedded Programming Fundamentals

71

a terminal) connected to the corresponding serial port.

Many MCUs provide hardware and software serial ports and
allow multiple ports to be used. However, one serial port is
usually considered the main one and is used for programming
(flashing) the MCU. It is also common that other ports are
implemented as software ones, so they put extra load on
the MCU's processor and resources such as RAM, timers and
interrupt system.

Data in the serial port are sent as bytes; thus, it is up to the developer to handle the
correct data conversion. Reading a single byte of the data using Serial.read() gets
another character from the FIFO queue behind the serial port software buffer. As most
communication is done textual way, the Serial class has support to ease the reading
of the strings: Serial.readString(), but use involves some extra logic such as the
function may timeout. Also, it may contain the END-OF-LINE / NEXT-LINE characters that
should be trimmed before usage [44].

Hardware buttons
Hardware buttons tend to vibrate when switching. This physical effect causes bouncing of
the state forth and back, generating, in fact, many pulses instead of a single edge during
switching. Getting rid of this is called debouncing. In most cases, switches (buttons) short
to 0 (GND) and use pull-up resistors, as in the figure 17.

Figure 17: Sample circuit of the switch with an external pull-up resistor connected to the GPIO2 of the MCU

The switch, when open, results in VCC through R1 driving the GPIO2 (referenced as HIGH),
and when short, 0 is connected to it, so it becomes LOW:

▪ button short → GPIO2=LOW,
▪ button released → GPIO2=HIGH.

Some MCUs offer internal pull-ups and pull-downs, configurable from the software level.
The transition state between HIGH and LOW causes bouncing.

3. Introduction to Embedded Programming

72

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/switch.png?id=book%3Aiot-open2nded

A dummy debouncing mechanism only checks periodically for a press/release of the
button. The common period for debouncing is between 50ms and 200ms. The code below
shows an example that has been provided for presentation purposes. Yet, it is not flexible
nor pragmatic due to the exhausting use of the loop() function and extensive use of
delay(). An internal pull-up resistor is in use in this example:

#define BUTTON_GPIO 2

bool bButtonPressed=false;

void setup() {
Serial.begin(9600);
pinMode(BUTTON_GPIO, INPUT_PULLUP);

}

void loop() {
if (digitalRead(BUTTON_GPIO)==LOW && !bButtonPressed)
{

Serial.println("Button pressed");
delay(200);
bButtonPressed=true;

}
if (bButtonPressed && digitalRead(BUTTON_GPIO)==HIGH)
{

Serial.println("Button released");
bButtonPressed=false;
delay(200);

}
}

A more advanced technique for complex handling of the buttons is presented below in
the context of the State Machines.

Finite State Machine
A Finite State Machine (FSM) idea represents states and flow conditions between the
states that reflect how the software is built for the selected system or its component. An
example of button handling using the FSM is present here. The FSM reflects the physical
state of the device, sensor or system on the software level, becoming a digital twin of a
real device.

For the simple case (without detecting double-click or long press), 3 different button
states can be distinguished: released, debouncing and pushed. An enumerator is an
excellent choice to model those states (it is easily expandable):

typedef enum {
RELEASED = 0,
DEBOUNCING,
PRESSED

} tButtonState;

A flow between the states can be then described in the following diagram (figure 18).

3.4. C/C++ Language Embedded Programming Fundamentals

73

Figure 18: State machine and transitions for button handling with software debouncing

▪ In the RELEASED state, there is waiting until the button is pressed (LOW, for the pull-up
model). The time is noted when it occurs, and the state changes to the DEBOUNCING.

▪ In the DEBOUNCING state, if debouncing time passes and the button is still pressed
(LOW), the machine changes its state to PRESSED. If the button in DEBOUNCING
becomes released (HIGH), then the machine returns to the state RELEASED.

▪ In the PRESSED state, it transits to the RELEASED whenever the button goes HIGH.

The state machine is implemented as a simple class and has 2 additional fields that
store handlers for functions that are called when the state machine enters PRESSED
or RELEASED. Those functions are called callbacks. There are 2 public functions for
callback registration as callback handlers class members are private. fButtonAction()
is intended to be called in a loop() as many times as possible to “catch” all pushes of
the button:

class PullUpButtonHandler{
private:

tButtonState buttonState=RELEASED;
uint8_t ButtonPin;
unsigned long tDebounceTime;
unsigned long DTmr;
void(*ButtonPressed)(void); //On button pressed callback
void(*ButtonReleased)(void); //On button released callback
void btReleasedAction() { //Action to be done

//when current state is RELEASED
if(digitalRead(ButtonPin)==LOW) {

buttonState = DEBOUNCING;
DTmr = millis();

}
}

3. Introduction to Embedded Programming

74

https://www.roboticlab.eu/homelab/_detail/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/debouncing_state_diagram.drawio.png?id=book%3Aiot-open2nded

void btDebouncingAction() { //Action to be done
//when current state is DEBOUNCING

if(millis()-DTmr > tDebounceTime)
if(digitalRead(ButtonPin)==LOW) {

buttonState = PRESSED;
if(ButtonPressed!=NULL) ButtonPressed();

}
else

buttonState=RELEASED;
}
void btPressedAction() { //Action to be done

//when current state is PRESSED
if(digitalRead(ButtonPin)==HIGH) {

buttonState=RELEASED;
if(ButtonReleased!=NULL) ButtonReleased();

}
}

public:
PullUpButtonHandler(uint8_t pButtonPin, unsigned long pDebounceTime) {

//Constructor
ButtonPin = pButtonPin;
tDebounceTime = pDebounceTime;

}
void fRegisterBtPressCalback(void (*Callback)()) {

//Function registering
//a button PRESSED callback

ButtonPressed = Callback;
}
void fRegisterBtReleaseCalback(void (*Callback)()) {

//Function registering
//a button RELEASED callback

ButtonReleased = Callback;
}
void fButtonAction() //Main, non blocking loop.

//Handles state machine logic
{ //along with private functions above

switch(buttonState) {
case RELEASED: btReleasedAction();

break;
case DEBOUNCING: btDebouncingAction();

break;
case PRESSED: btPressedAction();

break;
default:

break;
}

}
};

Sample use looks as follows:

#define BUTTON_GPIO 2

PullUpButtonHandler bh = PullUpButtonHandler(BUTTON_GPIO, 200);
void onButtonPressed() {

Serial.println("Button pressed");
}
void onButtonReleased() {

Serial.println("Released");

3.4. C/C++ Language Embedded Programming Fundamentals

75

}
void setup() {

Serial.begin(9600);
pinMode(BUTTON_GPIO, INPUT_PULLUP);
bh.fRegisterBtPressCalback(onButtonPressed);
bh.fRegisterBtReleaseCalback(onButtonReleased);

}

void loop() {
bh.fButtonAction();

}

The PullUpButtonHandler is instantiated with a 200ms
deboucing time. That defines a minimum press time to let
the machine recognise the button press correctly. That time is
quite long for most applications and can be easily shortened.

The great feature of this FSM is that it can be easily extended with new functions, such
as detecting the double click or long button press.

3.4.12. Hardware-specific extensions in programming

Some generic programming techniques and patterns mentioned above require
adaptation for different hardware platforms. It may occur whenever hardware-related
aspects are in charge, e.g., accessing GPIOs, ADC conversion, timers, interrupts,
multitasking (task scheduling and management), multicore management, power saving
extensions and most of all, integrated communication capabilities (if any). It can be
different for almost every single MCU or MCU family.
It is common for hardware vendors to provide rich examples, either in the form of
documentation and downloadable samples (e.g. STM) or via Github (Espressif),
presenting specific C/C++ code for microcontrollers.

Analog input
Some MCUs use specific setups. Analogue input may work out of the box. Still, low-
level control usually brings better results and higher flexibility (e.g. instead of changing
the input voltage to reflect the whole measurement range, you can regulate internal
amplification and sensitivity.

A special note on analogue inputs in ESP32
Please note implementation varies even between the ESP32 chips family, and not all
chips provide all of the functions, so it is essential to refer to the technical documentation
[45].

ESP32 has 15 channels exposed (18 total) of the up to 12-bit resolution ADCs. Reading
the raw data (12-bit resolution is the default, 8 samples per measure as default) using
the analogRead() function is easy.

3. Introduction to Embedded Programming

76

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Technically, under the hood on the hardware level, there are two ADCs (ADC1 and ADC2).
ADC 1 uses GPIOs 32 through 39. ADC2 GPIOs 0,2,4, 12-15 and 25-27. Note that ADC2 is
used for WiFi, so you cannot use it when WiFi communication is enabled.
Just execute analogRead(GPIO).
Several useful functions are here (not limited to):

▪ analogReadResolution(res) - where res is a value between 9 and 12 (default
12). For 9-bit resolution, you get 0..511 values; for 12-bit resolution, it is 0..4095
respectively.

▪ analogSetCycles(ccl) - where ccl is number of cycles per ADC sample. The default
is 8: the valid number is between 1 and 255.

▪ analogSetClockDiv(divider) - sets base clock divider for the ADC. That has an
impact on the speed of conversion.

▪ analogSetAttenuation(a) and analogSetPinAttenuation(GPIO, a) - sets input
attenuation (for all channels or selected channels). The default is ADC_11db. This
parameter reflects the dynamic scaling of the input value:
▪ ADC_0db - no attenuation (1V on input = 1088 reading on ADC), so full scale is

0..1.1V,
▪ ADC_2_5db - 1.34 (1V on input = 2086 reading on ADC), so full scale is 0..1.5V,
▪ ADC_6db - 1.5 (1V on input = 2975 reading on ADC), so full scale is 0..2.2V,
▪ ADC_11db - 3.6 (1V on input = 3959 reading on ADC), so full scale is 0..3.9V.

Do not execute consequent way analogRead(). As technically
all channels use the same two registers (ADC1 and ADC2), you
need to give it some time to sample (e.g. delay(100) between
consecutive reads on different channels).

Analog output
PWM frequently controls analogue-style, efficient voltage on the GPIO pin. Instead of
using a resistance driver, PWM uses pulses to change the adequate power delivered to
the actuator. It applies to motors, LEDs, bulbs, heaters and indirectly to the servos (but
that works another way).

A special note on ESP32 MCUs
The classical analogWrite method, known from Arduino (Uno, Mega) and ESP8266, does
not work for ESP32.
ESP32 has up to sixteen (0 to 15) PWM channels (controllers) that can be freely bound to
any of the regular GPIOs.
The exact number of PWM channels depends on the family member of the ESP chips,
e.g. ESP32-S2 and S3 series have only 8 independent PWM channels while ESP32-C3 has
only 6. In the Arduino software framework for ESP32, it is referred to as ledc. ESP32 can
use various resolutions of the PWM, from 1 to 20 bits, while regular Arduino uses only
8-bit one. Note - there is a strict relation between resolution and frequency: e.g. with high
PWM frequency, you cannot go with a resolution too high as the internal frequency of the
ESP32 chip is limited.

3.4. C/C++ Language Embedded Programming Fundamentals

77

To use PWM in ESP32, one must perform the following steps:

▪ configure GPIO pin as OUTPUT,
▪ initiate PWM controller by fixing PWM frequency and resolution,
▪ bind the controller to the GPIO pin,
▪ write to the controller (not to the PIN!) providing a duty cycle related to the resolution

selected above - every call persistently sets the PWM duty cycle until the next call to
the function setting duty cycle.

More information and detailed references can be found in the technical documentation
for the ESP32 chips family [46].

Sample code controlling an LED on GPIO 26 with 5kHz frequency and 8-bit resolution is
presented below:

#include "Arduino.h"

...

#define RGBLED_R 26
#define PWM1_Ch 5
#define PWM_Res 8
#define PWM_Freq 5000

...

ledcSetup(PWM1_Ch, PWM_Freq, PWM_Res);
//Instantiate timer-based PWM -> PWM channel

ledcAttachPin(RGBLED_R, PWM1_Ch);
//Bind a PWM channel to the GPIO

ledcWrite(PWM1_Ch,255);
//Full on: control via the PWM channel, not via the GPIO

...

You can bind one PWM channel to many GPIOs to control them
synchronously.

This technique can be easily adapted to control, e.g. standard and digital servos. PWM
signal specification to control servos is presented in the chapter hardware actuators.

Interrupts
Arduino boards used to have a limited set of GPIOs to trigger interrupts. In other MCUs,
it is a rule of thumb that almost all GPIOs (but those used, e.g. for external SPI flash) can
trigger an interrupt; thus, there is much higher flexibility in, e.g., the use of user interface
devices such as buttons.

A special note on ESP8266 and ESP32
Suppose the interrupt routine (function handler) uses any variables or access flash
memory. In that case, it is necessary to use some tagging of the ISR function because

3. Introduction to Embedded Programming

78

https://www.roboticlab.eu/homelab/en/iot-open/hardware2/actuators_motors

of the specific, low-level memory management. A use of IRAM_ATTR is necessary (part of
the code present in Interrupts:

void IRAM_ATTR ButtonIRS() { //IRS function
button_toggle =!button_toggle;

}

If the ISR and some other process write to the memory
(variable), providing exclusive access to the variable is
important. This may be achieved with so-called Muxes,
Semaphores and critical sections to ensure no deadlock will
occur. However, it is unnecessary if ISR writes to the variable
and some other process is reading it. The use of volatile for
the variable should be enough.

Without an advanced configuration, using the float type
(hardware accelerated floating point) will cause the
application to hang, throwing a panic error and immediate
restart of the MCU. It is due to the specific construction of the
MCU and FPU. Do not use the float type in interrupt handling.
If floating point operations are needed, use double as this one
is calculated the software way.

Timers
The number of hardware timers, their features, and specific configuration is per MCU.
Even single MCU families have different numbers of timers, e.g., in the case of the STM32
chips, the ESP32, and many others. Those differences, unfortunately, also affect Arduino
Framework as there is no uniform HAL (Hardware Abstraction Layer) for all MCUs so far.

A special note on ESP32 MCUs
The number of hardware timers varies between family members. Most ESP32s have 4,
but ESP32-C3 has only two [47]. A timer is usually running at some high speed. The
most common is 80MHz and requires a prescaller to be useful. Timers periodically call
an interrupt (a handler) written by the developer and bound to the timer during the
configuration. Because interrupt routines can run asynchronously to the main code and,
most of all, because ESP32s (most) are double core, it is necessary to take care of the
deadlocks that can appear during the parallel access to the shared memory values, such
as service flags, counters etc.
Special techniques using the critical section, muxes and semaphores are needed when
more than one routine writes to the shared variable between processes (usually main
code and an interrupt handler). However, It is unnecessary in the scenario where the
interrupt handler writes to the variable and some other code (e.g. in the loop() section
reads it without writing, as in the case of the example presented below.
In this example, the base clock for the timer in the ESP32 chip is 80MHz, and the timer
(tHBT - short from Hear Beat Timer) runs at the 1MHz speed (PRESCALLER is 80) and

3.4. C/C++ Language Embedded Programming Fundamentals

79

https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/interrupts

counts up to 2 000 000. So, the interrupt handler is effectively called once every 2
seconds. This code runs separate from the loop() function, asynchronously calling the
onHBT() interrupt handler.
onHBT() interrupt handler swaps the boolean value every two seconds. The value then
is translated by the main loop() code to drive an LED on the ESP32 development board
(here it is GPIO 0), switching it on and off. The onHBT() handler function could directly
drive the GPIO to turn the LED on and off. Still, we present a more complex example with
a volatile variable LEDOn just for education purposes.

#include "esp32-hal-timer.h"

#define LED_GPIO 0 //RED LED on GPIO 0 - vendor-specific
#define PRESCALLER 80 //80MHz->1MHz
#define COUNTER 2000000 //2 million us = 2s

volatile bool LEDOn = false;
hw_timer_t *tHBT = NULL; //Heart Beat Timer

void IRAM_ATTR onHBT(){ //Heart Beat Timer interrupt handler
LEDOn = !LEDOn; //Change true to false and opposite;

//every call
}

void setup() {
Serial.begin(9600);
pinMode(LED_GPIO, OUTPUT);

tHBT = timerBegin(0, PRESCALLER, true);
//Instantiate a timer 0 (first)
//Most ESP32s (but ESP32-C3) have 4 timers (0-3),
//and ESP32-C3 has only two (0-1).

if (tHBT==NULL) //Check timer is created OK, NULL otherwise
{

Serial.println("Timer creation error! Rebooting...");
delay(1000);
ESP.restart();

}
timerAttachInterrupt(tHBT, &onHBT, true);

//Attach interrupt to the timer
timerAlarmWrite(tHBT, COUNTER, true);

//Configure to run every 2s (2000000us) and repeat forever
timerAlarmEnable(tHBT);

}
//Loop function only reads LEDOn value and updates GPIO accordingly
void loop() {

digitalWrite(LED_GPIO, LEDOn);
}

Timers can also be used to implement a Watchdog. Regarding the example above, it is
usually a “one-time” triggered action instead of a periodic one. All one needs to do is to
change the last parameter of the timerAlarmWrite function from true to false.

3. Introduction to Embedded Programming

80

3.5. Programming with the Use of Scripts

Several programming models for IoT script programming are available. Depending on the
hardware model used (SoC or OS-based MCU), it may involve single script execution (e.g.
Raspberry Pi Pico RP2040, Edge-class IoT) or multithreaded, parallel, multiple scripts,
doing multiple tasks (e.g. Raspberry Pi 4, Fog-class IoT). The idea and model of the
scripting programming for SoC class devices (edge) were presented in the chapter Script
Programming with Middleware.
In the case of far more powerful, Fog-class IoT devices that are OS-based devices, a
variety of programming languages and, thus, scripting interpreters are available.

Among others, the most common scripting languages for fog class devices are :

▪ Bash scripting (OS command scripting) usually does not provide support for the GPIO,
intended to automate OS tasks,

▪ Python scripting, cross-platform for both Edge-class devices (Micrpython) and Fog-
class (regular Python, usually run on Linux),

▪ C#, limited to the Windows IoT for Raspberry Pi.

Bash scripting
As Bash scripting is well covered by many manuals for Linux, in the following chapters,
we focus on two others: Python and C#. Moreover, accessing the GPIO in the case of
the bash requires installing external tools; thus, it does not apply to IoT programming
straightforwardly but rather as a supplementary tool to automate tasks other than core
programming.

Python
Python programming for IoT devices is dual:

▪ Regular Python interpreter can be used in Fog class devices such as Raspberry Pi and
its clones. In this case, the Python interpreter is run as a separate process in the Linux
OS, the same way as in regular PCs. It has full access to the GPIO, however.

▪ Micropython is dedicated to SoCs and is distributed as the firmware that must be
flashed into the device. Commonly, Micropython exposes serial communication on
dedicated pins, exposing a Python console that looks similar to the command line
Python interface in the PCs

C# .NET
When writing this publication, the .NET framework with C# interpreter is available only for
Raspberry Pi devices as a part of the Windows IoT operating system [48]. It is a niche, still
fully functional and solid solution. Its newer versions are available only as a commercial
product, however.

3.5. Programming with the Use of Scripts

81

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2
https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2

3.5.1. Python Fundamentals for IoT

A program in Python is stored in text files on the device's file system, as Python's source
code is interpreted, not compiled, opposite to C++. A typical file extension for programs
in Python is .py. In the context of IoT programming, both Python and Micropython
share the same syntax and mostly the same libraries, so source code, in many cases,
is portable. General hardware-related libraries like GPIO handling or timers are shared
between those two Python worlds, and hardware-specific differences are minor compared
to the Arduino framework.
Python is simple and efficient in programming the not-so-complex IoT algorithms but
does not offer the level of control needed in real-time applications. It can be easily used
for prototyping, testing hardware and implementing simple tasks.

Python is the language of the first choice when it comes to AI
applications. Most autonomous devices (such as cars) run, in
fact, Python code along with C++, hardware accelerated, on
IoT fog class devices such as the NVIDIA Jetson family.

Obviously, Micropython does not contain nor allow the use of
very complex libraries and frameworks that sometimes are
provided to the developer with only binary backend (that is
CPU or MCU specific) such as Tensorflow for AI applications.

Nowadays, Python interpreter usually comes with OS (Linux) preinstalled. The sample
installation procedure for Raspbian OS is presented in the manual maintained by the
Raspberry Pi manufacturer [49]. In the case of the popular Raspbian or Ubuntu for
Raspberry Pi, there are usually 2 versions of Pythons preinstalled: Python 2 and Python
3, because of the historical differences between implementations. Many OS applications
are written in Python.
Python version can be started from the terminal simply by calling:

~$ python --version
Python 3.8.10

In the case one needs to use a specific version, you can start the interpreter explicitly
referring to Python 2 or Python 3:

~$ python2
Python 2.7.18 (default, Jul 29 2022, 09:29:52)
[GCC 9.4.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> quit()

3. Introduction to Embedded Programming

82

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

~$ python3
Python 3.8.10 (default, May 26 2023, 14:05:08)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> quit()

Python can be executed via a desktop graphical interface (in the graphical terminal), in
a text-based Linux installation via terminal, or remotely via ssh. As it is possible to write
applications with visual GUI, starting them in a non-graphical installation of the Linux
OS will throw an error. To execute a Python script (program), one needs to execute the
following:

~$ python mypythoniotapp.py

Linux, Windows and Mac systems used to bind a .py file extension with a default Python
interpreter, so it is possible to run Python script directly, either with the use of file
manager or execute it from the command line:

~$./mypythoniotapp.py

Note: Python script must be marked as “executable” to run it
directly.

The following chapters present Python coding elements specific to the microcontrollers.
A complete Python course is beyond the scope of this publication, but it can be easily
obtained online (links presented by the end of the chapter).

IDEs for Python
A dozen of IDEs can be used to program in Python. The most common are:

▪ IDLE Editor, formerly delivered with Raspbian OS in the bundle, requires GUI. It is
currently obsolete but still popular among hobbyists.

▪ Thonny Python IDE, which comes with Raspbian OS, recently took over IDLE.
▪ Visual Studio Code with plugins for Python, standard with Arduino framework, that

also easily integrates remote Python development - it provides two development
scenarios: local on the IoT device (Raspberry Pi, requires GUI) and remote from the PC
to the IoT device, that works with headless Raspberry Pi OSes installations.

▪ PyCharm Community Edition requires additional installation [50] and requires GUI.
▪ Simple code can be authored in the terminal using any text editor (e.g. Nano), as

Python source files do not require compilation and are plain text ones. This is not very
convenient, but it can help if no dedicated IDE and GUI are available, e.g., for rapid
work remotely.

3.5. Programming with the Use of Scripts

83

Additional Resources for Python programming for beginners
For in-depth Python courses and more, follow the links:

1. The Python syntax and semantics: Python Semantics.
2. The Python Package Index (PyPi): PyPi.
3. The Python Standard Library: PSL.
4. Free online Python course: learnpython.org.

First program in Python

Programming in Python is quite easy. In case you're using a Raspberry Pi with Python
installed, once you access the console, you can run the following code:

print("Hello IoT")

You can store a program in a text file (usually with an extension .py) or interactively type
it inline in Python's console.
Assuming your file is stored in the file named helloworld.py that contains the code
above, an execution and its result are presented on the screen as in figure 19.

Figure 19: Hello World in Python

Python has an interactive console that lets one type the code in. To exit back to the
command line, it is necessary to execute the quit() function (figure 20).

3. Introduction to Embedded Programming

84

https://en.wikipedia.org/wiki/Python_syntax_and_semantics
https://pypi.org/
https://docs.python.org/3/library/
https://www.learnpython.org/
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/screenshot_from_2023-09-24_14-56-27.png?id=book%3Aiot-open2nded

Figure 20: Interactive Python console

Micropython

MicroPython implements the Python programming language optimized for
microcontrollers and embedded systems that are resource-constrained devices. It is
simple and enables rapid prototyping.

Here are some key features and characteristics of MicroPython:

1. MicroPython is designed to run on devices with limited memory and processing
power. It has a small storage and RAM footprint.

2. MicroPython is compatible with Python 3 syntax.
3. MicroPython includes a Read-Eval-Print Loop (REPL), which allows developers to run

interactively and test code on a microcontroller line by line and evaluate results
immediately. This feature is invaluable for debugging and tracing.

4. MicroPython provides a rich set of libraries and modules for interacting with hardware
components such as GPIO pins, sensors, motors, displays and networking capabilities
that make it suitable for building IoT devices.

5. MicroPython is designed to be cross-platform. including popular ones like the
ESP8266, ESP32, Raspberry Pi Pico, and more. Developers should be aware of the
hardware limitations that somehow reduce code portability.

6. MicroPython has a growing community, shared libraries and sample projects. A
package manager called “upip” also enables the installation of additional
MicroPython libraries easily.

7. MicroPython is released under an open-source license (typically the MIT License).
8. MicroPython is designed to be power-efficient, crucial for battery-powered and

3.5. Programming with the Use of Scripts

85

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/screenshot_from_2023-09-24_14-58-18.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

energy-constrained devices.
9. While Micropython is not a real-time operating system (RTOS) itself, it can be used in

conjunction with RTOSes to build real-time systems, if only needed.
10. MicroPython is a popular choice for educational purposes: thanks to REPL, the setup

of the SDK is simple and quick.

Installation
Installation of the Micropython usually involves flashing firmware, specific for a
microcontroller, that contains a Python interpreter and becomes de-facto a middleware
between hardware and developer used with means of scripts. Micropython scripts can be
executed inline via terminal (REPL), or a file with a source code (usually named main.py)
can be uploaded to the drive's root folder exposed via USB connection by the MCUs
firmware.

A website that is a starting point for Micropython is https://micropython.org[51].

The installation procedure is specific to the hardware platform and sometimes differs
slightly from flashing C++-based solutions or burning an OS, as in the case of the
RP2040. The main steps to prepare a working environment are presented below:

▪ Download a Micropython binary image suitable for your hardware.
▪ Switch the MCU into the bootloader mode that exposes a flash drive: in the case of

the RP2040, the easiest way is to hold down the Bootsel button and power on the
device while holding.

▪ Move the firmware file into the flash drive; the device will flash and reboot.
▪ Connect to the serial port exposed.

Development
Once Micropython is installed in the device, it exposes a terminal (REPL) via serial port,
either on the dedicated GPIOs for serial or via serial over USB. Developing directly inline
is possible (samples are presented in the following chapters) but it is not convenient for
complex code. Complex and multi-file solutions can benefit from uploading files (even
multiple) to the device. A file named main.py is automatically executed on device restart.

IDEs use those features to simplify development and enable remote code authoring and
execution.

Remote development in Python

As developers use PCs to author software, but it is executed in the microcontroller, using
a terminal over a serial connection or secure shell (SSH) may not be convenient for
larger projects. For this reason, many IDEs can perform remote development with code
authored in the IDE on the PC but executed on the MCU. It requires a stable connection
between the development host and the microcontroller and sometimes installation of
the remote development host. One of the most flexible IDEs, able to act in virtually any
scenario of remote development, is Visual Studio Code[52].

3. Introduction to Embedded Programming

86

https://micropython.org/
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Programming Raspberry Pi with regular Python can also be executed using development
tools installed directly on the RPi, e.g. using Thonny[53]. It is not the case of programming
with Micropython that one needs to connect to it remotely. However, installing an external
development environment on a PC or Mac computer is usually more convenient. Visual
Studio Code comes with a ready solution for both scenarios.

Python
In the case of the RPi programming, VS Code connects to the RPi via Secure Shell (SSH)
and installs development tools remotely. The model is present in the figure 21.

Figure 21: Remote development for RPi with VS Code and Python

Configuring the remote target requires a few simple steps.
Initiate connection to the remote device: over SSH, the target RPi board runs Linux on
ARM, here Rasbian, but is also works with other Linux distributions or even remote Docker
containers exposing SSH (figures 22 and 23):

Figure 22: Connecting to the remote development target from under VS Code

3.5. Programming with the Use of Scripts

87

https://www.roboticlab.eu/homelab/_detail/en/iot-open/scriptingprogramming/python_remote_development_vs_code.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/scriptingprogramming/screenshot_from_2023-09-29_18-33-15.png?id=book%3Aiot-open2nded

Figure 23: Connecting to the remote development target from under VS Code (cont.)

Remote development is straightforward, as in the case of the local one (figure 24):

Figure 24: Python remote development for RPi in action, using VS Code

Micropython
In the case of the Micropython, the connection is usually made via a serial port that
is exposed either on the device's GPIOs (RX, TX) or as a Serial over USB. Micropython
devices commonly expose a filesystem over the USB, alternatively to the Serial over
USB. This is usually inducted with an onboard button press during the boot process.
Boot system exposition enables an easy firmware (Micropython) update and source file
management, such as uploading and downloading the libraries and application source
code. A file named 'main.py' is executed automatically on boot if it only exists in the
device's root folder and the device is not in the filesystem mode. Some devices (such
as RP2040) also provide file management via Serial over USB and thus do not require
enabling the filesystem mode manually but rather enable IDE to manage files along with
development. For this reason, files can be stored locally and executed with REPL or stored

3. Introduction to Embedded Programming

88

https://www.roboticlab.eu/homelab/_detail/en/iot-open/scriptingprogramming/screenshot_from_2023-09-29_18-33-38.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/scriptingprogramming/screenshot_from_2023-09-29_18-35-02.png?id=book%3Aiot-open2nded

remotely on the Micropython device. A concept of the code development for Micropython
is graphically present in the figure 25.

Figure 25: Remote development for Micropython-enabled devices with VS Code and Python (Micropython)

Remote development requires a VS Code plugin to communicate with the Micropython
device. One of them is MicroPico, which is dedicated to Raspberry RP2040 (Pico and Pico
W), and it can be installed and updated with VS Code extension manager (figure 26).

Figure 26: MicroPico extension for Visual Studio Code

Code then can be stored locally or remotely and easily executed via the right-click
command (figure 27):

3.5. Programming with the Use of Scripts

89

https://www.roboticlab.eu/homelab/_detail/en/iot-open/scriptingprogramming/micropython_remote_development_vs_code_2.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/scriptingprogramming/screenshot_from_2023-10-01_19-06-45.png?id=book%3Aiot-open2nded

Figure 27: Executing Python code on Micropython device (RP2040)

Python Data Types and Variables

Python aims to be consistent and straightforward in the design of its syntax. The best
advantage of this language is that it can dynamically set the variable types depending
on the values' types as set for variables.

Base Types
Python has a wide range of data types, like many simple programming languages:

▪ number,
▪ string,
▪ list,
▪ tuple
▪ dictionary.

Numbers
Standard Python methods are used to create the numbers:

var = 1234 #Creates Integer number assignment
var = 'George' #Creates String type var

Python can automatically convert types of the number from one type to another. Type
can also be defined explicitly.

int a = 10
long a = 123L

3. Introduction to Embedded Programming

90

https://www.roboticlab.eu/homelab/_detail/en/iot-open/scriptingprogramming/screenshot_from_2023-10-01_20-04-57.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

float a = 12.34
complex a = 3.23J
<code>

String\\
To define Strings, use eclosing characters in quotes.
Python uses single quotes ', double " and triple """ to denote strings.
<code Python>
Name = "George'
lastName = "Smith"
message = """this is the string message which is spanning across multiple lines."""

List
The list contains a series of values. To declare list variables, use brackets [].

A = [] #Blank list variable
B = [1, 2, 3] #List with 3 numbers
C = [1, 'aa', 3] #List with different types

The list indexing is zero-based. Data can be assigned to a specific element of the list
using an index into the list.

mylist[0] = 'sasa'
mylist[1] = 'wawa'

print mylist[1]

Lists aren't limited to a single dimension.

myTable = [[],[]]

In a two-dimensional array, the first number is always the row number, while the second
is the column number.

Tuple
Python Tuples are defined as a group of values like a list and can be processed similarly.
When assigned, Tuples got the fixed size. In Python, the fixed size is immutable. The lists
are dynamic and mutable. To define Tuples, parenthesis () must be used.

TestSet = ('Piotr', 'Jan', 'Adam')

Dictionary
The list of key-value pairs defines a Dictionary in Python. This data type holds related
information that can be associated with keys. The Dictionary extracts a value based on
the key name. Lists use the index numbers to access its members when dictionaries use
a key. Dictionaries generally are used to sort, iterate and compare data.

To define the Dictionaries, the braces ({}) are used with pairs separated by a comma (,)
and the key values associated with a colon (:). Dictionaries Keys must be unique.

box_nbr = {'Alan': 111, 'John': 222}
box_nbr['Alan'] = 222 #Set the associated 'Alan' key to value 222'
print (box nbr['John']) #Print the 'John' key value

3.5. Programming with the Use of Scripts

91

box_nbr['Dave'] = 111 #Add a new key 'Dave' with value 111
print (box_nbr.keys()) #Print the keys list in the dictionary
print ('John' in box_nbr) #Check if 'John' is in the dictionary

#This returns true

All variables in Python hold references to objects and are passed to functions. Function
can't change the value of variable references in its body. The object's value may be
changed in the called function with the “alias”.

>>> alist = ['a', 'b', 'c']
>>> def myfunc(al):

al.append('x')
print al

>>> myfunc(alist)
['a', 'b', 'c', 'x']
>>> alist
['a', 'b', 'c', 'x']

Python Program Control Structures

if Statements
If an expression returns TRUE statements are carried out; otherwise, they aren't.

if expression:
statements

Sample:

no = 11
if no >10:
print ("Greater than 10")
if no <=30

printf ("Between 10 and 30")

Output:

>>>
Greater than 10
Between 10 and 30
>>>

else Statements
An else statement follows an if statement and contains code called when the if
statement is FALSE.

x = 2
if x == 6

printf ("Yes")

3. Introduction to Embedded Programming

92

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

else:
printf ("No")

elif Statements
The elif (shortcut of else if) statement is used when changing if and else
statements. A series of if…elif statements can have a final else block, which is called
if none of the if or elif expressions is TRUE.

num = 12
if num == 5:

printf ("Number = 5")
elif num == 4:

printf ("Number = 4")
elif num == 3:

printf ("Number = 3")
else:

printf ("Number = 12")

Output:

>>>
Number = 12

>>>

Boolean Logic
Python uses logic operators like AND, OR and NOT.

The AND operator uses two arguments and evaluates to TRUE if, and only if, both
arguments are TRUE. Otherwise, it evaluates to FALSE.

>>> 1 == 1 and 2 == 2
True
>>> 1 == 1 and 2 == 3
False
>>> 1 != 1 and 2 == 2
False
>>> 4 < 2 and 2 > 6
False
>>>

Boolean operator or uses two arguments and evaluates as TRUE if either (or both) of its
arguments are TRUE, and FALSE if both arguments are FALSE.

The result of NOT TRUE is FALSE, and NOT FALSE goes to TRUE.

>>> not 2 == 2
False
>>> not 6 > 10
True
>>>

Operator Precedence
Operator Precedence uses the mathematical idea of operation order, e.g. multiplication
begins performed before addition.

3.5. Programming with the Use of Scripts

93

>>> False == False or True
True
>>> False == (False or True)
False
>>> (False == False) or True
>>>True
>>>

Python Looping

while Loop
An if statement is run once if its condition evaluates to TRUE and never if it evaluates to
FALSE.

A while statement is similar, except it can be run more than once. The statements inside
it are repeatedly executed as long as the condition holds. Once it evaluates to FALSE, the
next section of code is executed.

i = 1
while i<=4:

print (i)
i+=1

print ('End')

Output:

>>>
1
2
3
4
End
>>>

The infinite loop is a particular kind of the while loop; it never stops running. Its
condition always remains TRUE.

while 1 == 1:
print ('in the loop')

To end the while loop prematurely, the break statement can be used. The break
statement causes the loop to finish immediately when encountered inside a loop.

i = 0
while 1==1:

print (i)
i += 1
if i >=3:

print('breaking')
break;

3. Introduction to Embedded Programming

94

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

print ('finished')

Output:

>>>
0
1
2
3
breaking
finished
>>>

Another statement that can be used within loops is continue.

Unlike break, continue jumps back to the top of the loop rather than stopping it.

i = 0
while True:

i+=1
if i == 2:

printf ('skipping 2')
continue

if i == 5:
print ('breaking')
break

print (i)
print ('finished')

Output:

>>>
1
skipping 2
3
4
breaking
finished
>>>

for Loop

n = 9
for i in range (1,5):

ml = n * i
print ("{} * {} = {}".format (n, i, ml))

Output:

>>>
9 * 1 = 9
9 * 2 = 18
9 * 3 = 27
9 * 4 = 36

3.5. Programming with the Use of Scripts

95

>>>

Python Sub-Programs

One of the most important in mathematics concept is to use functions. The executing
function produces one or more results, dependent on the parameters passed to it and
provides a re-usable piece of code, still somehow flexible, depending on the parameters.
In general, a function is a structuring element in the programming language which groups
a set of statements so they can be called more than once in a program. Programming
without functions will need to reuse code by copying it and changing its different context.
Using functions enhances the comprehensibility and quality of the program. It also lowers
the software's memory usage, development cost and maintenance.

Different naming is used for programming language functions, e.g., subroutines,
procedures or methods.

Python language defines function by a def statement. The function syntax looks as
follows:

def function-name(Parameter list):
statements, e.g. the function body

Function bodies can contain one or more return statements. It can be situated anywhere
in the function body. A return statement ends the function execution and returns the
result, e.g. to the caller. If the return statement does not contain an expression, the value
None is returned.

def Fahrenheit(T_in_celsius):
""" returns the temperature in degrees Fahrenheit """
return (T_in_celsius * 9 / 5) + 32

for t in (22.6, 25.8, 27.3, 29.8):
print(t, ": ", fahrenheit(t))

Output:

>>>
22.6 : 72.68
25.8 : 78.44
27.3 : 81.14
29.8 : 85.64
>>>

Optional Parameters
Functions can be called with optional parameters, also named default parameters. If the
function is called without parameters, the default values are used. The following code
greets a person. If no person's name is defined, it greets everybody:

def Hello(name="everybody"):

3. Introduction to Embedded Programming

96

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

""" Say hello to the person """
print("Hello " + name + "!")

Hello("George")
Hello()

Output:

>>>
Hello George!
Hello everybody!
>>>

Docstrings
The string is usually the first statement in the function body, which can be accessed with
function_name.doc. This is a Docstring statement.

def Hello(name="everybody"):
""" Say hello """
print("Hello " + name + "!")

print("The docstring of the function Hello: " + Hello.__doc__)

Output:

>>>
The function Hello docstring: Say hello
>>>

Keyword Parameters
The alternative way to make function calls is to use keyword parameters. The function
definition remains unchanged.

def sumsub(a, b, c=0, d=0):
return a - b + c - d

print(sumsub(12,4))
print(sumsub(42,15,d=10))

Only keyword parameters are valid, which are not used as positional arguments. If
keyword parameters don't exist, the next call to the function will need all four arguments,
even if the c needs just the default value:

print(sumsub(42,15,0,10))

Return Values
In the above examples, the return statement exists in sumsub but not in the Hello
function. The return statement is not mandatory. If an explicit return statement doesn't
exist in the sample code, it will not show any result:

def no_return(x,y):
c = x + y

res = no_return(4,5)
print(res)

3.5. Programming with the Use of Scripts

97

Any result will not be displayed in:

>>>

Executing this script, the None will be printed. If a function doesn't contain an expression,
the None will also be returned:

def empty_return(x,y):
c = x + y
return

res = empty_return(4,5)
print(res)

Otherwise, the expression value following return will be returned. In this example, 11 will
be printed:

def return_sum(x,y):
c = x + y
return c

res = return_sum(6,5)
print(res)

Output:

>>>
9
>>>

Multiple Values Returning
Any function can return only one object. An object can be a numerical value – integer,
float, list or a dictionary. To return, e.g. three integer values, one can return a list or a
tuple with these three integer values. It means that the function can indirectly return
multiple values. The following example calculates the Fibonacci boundary for a positive
number returns a 2-tuple. The Largest Fibonacci Number smaller than x is the first,
and the Smallest Fibonacci Number larger than x is next. The return value is stored via
unpacking into the variables lub and sup:

def fib_intervall(x):
""" returns the largest Fibonacci number, smaller than x and the lowest
Fibonacci number, higher than x"""
if x < 0:

return -1
(old, new, lub) = (0,1,0)
while True:

if new < x:
lub = new
(old,new) = (new,old+new)

else:
return (lub, new)

while True:
x = int(input("Your number: "))
if x <= 0:

break

3. Introduction to Embedded Programming

98

(lub, sup) = fib_intervall(x)
print("Largest Fibonacci Number < than x: " + str(lub))
print("Smallest Fibonacci Number > than x: " + str(sup))

Python for Hardware

Using hardware interfaces with python requires specific, binary libraries. Thus it is not as
easily exchangeable among platforms as the hardware-aware part of the code. Below are
some hardware-related samples for Python and Micropython.

Controlling GPIO
The following code presents a sample Python application that flashes an LED connected
to Raspberry Pi's GPIO pin 5. One must build a circuit (LED + resistor of a proper value)
and connect it to the GPIO before running the code.
This example uses a dedicated GPIO handling library (specific for hardware): RPi.GPIO.
For other IoT platforms, this may var., e.g. Micropython uses a Machine library instead - it
covers all the microcontroller's hardware.

import RPi.GPIO as GPIO
import time

def blink(pin):
GPIO.output(pin,GPIO.HIGH)
time.sleep(1)
GPIO.output(pin,GPIO.LOW)
time.sleep(1)
return

GPIO.setmode(GPIO.BCM)
GPIO.setup(16, GPIO.OUT)

for i in range(0,5):
blink(16)

GPIO.cleanup()

A code equivalent for the above algorithm to run in Micropython (here for RP2040) looks
quite similar:

import machine
import time

led=machine.Pin(16, machine.Pin.OUT)

def blink():
led.toggle()
time.sleep(1)
led.toggle()
time.sleep(1)

led.value(0)

3.5. Programming with the Use of Scripts

99

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

for i in range(5):
blink()

Interrupts Handling
Similarly to the GPIO, interrupts are hardware-specific; thus, libraries may differ among
platforms, hence Python syntax. The sample present below is for Raspberry Pi (regular
Python), and the following code is for RPi Pico (RP2040, Micropython).

import RPi.GPIO as GPIO
import time

led_last = time.time_ns()
led_state = GPIO.LOW

GPIO.setmode(GPIO.BCM)
GPIO.setup(16, GPIO.OUT, initial=led_state)
GPIO.setup(17, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def btnHandler(pin):
global led_test, led_state
if (led_state==GPIO.LOW):

led_state=GPIO.HIGH
else:

led_state=GPIO.LOW
GPIO.output(16, led_state)

GPIO.add_event_detect(17, GPIO.FALLING, callback=btnHandler, bouncetime=200)

while(True):
time.sleep(0)

The sample code for RP2040 Micropython is present below, and its implementation live,
via serial port, directly on the MCU is present in the figure 28:

import machine
import time
import utime
led=machine.Pin(16, machine.Pin.OUT)
btn=machine.Pin(15, machine.Pin.IN, machine.Pin.PULL_UP)
led_last = time.ticks_ms()

def btnHandler(pin):
global led, led_last, btn
if (time.ticks_diff(time.ticks_ms(), led_last)) > 500:

led.toggle()
led_last=time.ticks_ms()

led.value(0)
btn.irq(trigger=machine.Pin.IRQ_RISING, handler=btnHandler)

3. Introduction to Embedded Programming

100

Figure 28: Micropython (on RP2040 Pico) hardware interrupt sample, implemented via serial port, inline

Note: there is no need to do a blind, infinite loop by the end of
the application in the case of the Micropython inline coding, as
code runs infinitely in this example. This is because interrupts
run asynchronously once defined. However, this is not the
case in the regular RPI Python scripts, where the program
is executed as a task within an operating system (Raspbian,
Armbian, Ubuntu, etc.), and the script quits if not blocked
explicitly with an infinite loop.

3.5.2. Windows IoT and C# Fundamentals

Installing the Windows 10 IoT Core
Microsoft Windows 10 IoT OS system is available for download from Windows 10 IoT Core
Developers tools [54].

Step 1
Download the Windows 10 IoT Core Dashboard Setup. Run the Setup.exe file and choose

3.5. Programming with the Use of Scripts

101

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/screenshot_from_2023-09-25_16-39-52.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

the Setup a new device tab as present in figure 29.

Figure 29: Windows Insider Program Win10 IoT Core Setup

Step 2
On the IoT Dashboard window, the User must choose the device type to install the
OS system and the OS version to install (latest developer version 17763 or custom).
The device's name and Administrator password can be set during SD card with OS
preparation. The default password for the Windows 10 IoT Core is passw0rd If the Wi-
Fi network Connection is available on the computer running the Setup, it is possible to
configure the generated OS image to set this connection on the selected device board
automatically.
Accepting the software license terms enables the Download and Install button to format
the SD Card and prepare the OS image for the selected device board.
Choosing the Connect to Azure tab and following the Azure User registration opens the
ability of the OS image to automatically connect to the Azure IoT hub after the device
powers on.

Step 3
Start formatting the SD card and install the FFU image on it.

Step 4
Gently remove an SD card from the reader and push it into the Raspberry Pi SD card slot.

Step 5
Power on the Raspberry Pi board and follow the Windows 10 Core setup commands
configuring the Windows 10 Core features.
After the board reboot, the Main Windows 10 Core screen displays (figure 30):

3. Introduction to Embedded Programming

102

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/win_10_iot_core_setup.png?id=book%3Aiot-open2nded

Figure 30: Windows 10 Core system view

Configuring Windows IoT Development Environment

This chapter describes the typical programming technics used in Raspberry Pi board
development projects.

Raspberry Pi Under Windows 10 IoT Core
To create and develop control applications on the Raspberry Pi boards, one needs the
following development components:

▪ PC with Windows 10 System installed,
▪ Visual Studio 2015 or higher,
▪ Raspberry PI 2 or 3 board with Windows 10 IoT Core installed,
▪ configured TCP/IP network for Raspberry Pi and Windows 10 Desktop computer (Local

LAN or WiFi subnet),

A list of programming skills necessary to seamlessly develop for Windows IoT is listed
below:

▪ C# language knowledge,
▪ XML/XAML language knowledge,
▪ Windows API understanding.

The Windows IoT Remote Client is welcome for a better development experience of
Raspberry applications. This application is available for download from the Microsoft
Store. This application captures the keyboard, mouse and screen from the Raspberry Pi
board running the Windows 10 IoT Core system on the desktop PC. It allows developers

3.5. Programming with the Use of Scripts

103

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/win10_iot_core.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

to use a standalone Raspberry board without a connected mouse, keyboard or monitor
(figure 31).

Figure 31: Microsoft Store – Windows IoT Remote Client

To write and develop applications under Windows 10 IoT Core, developers must know
how the Windows operating system interacts with User applications. The advantage of
using Windows 10 IoT Core is that Microsoft's concept uses the same Kernel API available
on different hardware platforms – desktop PCs, IoT boards suitable to run Windows Core,
tablets, etc. It reduces development costs due to the unifying system environment, and
the only difference is in the display view of the same application code written in C#/C++.
Windows 10 Core is specially designed to handle applications working as standalone on
the IoT platforms in a 24/7 time model.

Configuring the Windows 10 IoT Core Platform
After installing the Windows 10 IoT Core, the developer must configure the IoT platform
using Windows Device Portal (WDP, figure 32).

3. Introduction to Embedded Programming

104

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/windows_iot_rc.png?id=book%3Aiot-open2nded

Figure 32: Windows Device Portal view

IoT board can be managed using Chrome, Microsoft Edge, Firefox, and any Internet
browser. To open the WDB portal on the IoT board, the user must enter the board IP
address – IPaddress:8080/default.htm. The site is protected with a username/password.
Default account credentials are: administrator/p@ssw0rd. Following tabs in the WDP,
it is possible to configure all necessary IoT platform settings, check the current board
status, download development crash/debug information, configure network/Bluetooth
settings, download drivers, and configure security TPM modules. If all tasks are ready, the
developer can start to write his own IoT application under Windows 10 IoT Core.
The following steps are recommended before the IoT board will be used for application:

Step 1
In the Device Settings, the user is recommended to Change your device name. The
default name is minwinpc. The aim to change it is that if a user uses many IoT devices
connected to the same network segment, it is challenging to recognise which role each
device is set for. Enumerating IoT devices will show boards with the same name but
different IP addresses. Proper naming will make it easy to know what role each device
plays.

Step 2
Because RPI boards don't have their own RTC clock modules, Windows 10 IoT Core
sets the time using the NTP services during its work. So, very important in industrial
implementations, and a case when time is essential in developed applications, is to set
the proper time zone for the board. In the Device settings, the user is recommended
to select the appropriate Time zone

Step 3
Security reasons – the default password for the newly flashed device is p@ssw0rd. It is

3.5. Programming with the Use of Scripts

105

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/wdp.png?id=book%3Aiot-open2nded

strongly recommended right after the first board boot to change it to make it unique! It
will prevent the IoT device from remote hacking. The password can be changed in the
Device Settings tab.

Step 4
The Windows 10 IoT Core comes with Cortana service ready. If the board has a
microphone and speakers, it is always possible to turn the Cortana service on for voice
commands communication with the board.

Step 5
If the IoT board needs special hardware connected, then in the Devices/Device
Manager, the user can upload and install an appropriate driver for it in case it is not
preinstalled in the IoT Core (figure 33).

Figure 33: Device Manager view

Step 6
Raspberry Pi boards 1/2/3 are equipped with network connection modules. If the board
under Windows 10 IoT Core is connected to a LAN RJ45 connector, the IP number can be
set via the DHCP server. If the user wants to use a WiFi connection or activate Bluetooth,
he can do it directly on the board main display or manage it via the Windows Device
Portal as present in figures 34 and 35.

3. Introduction to Embedded Programming

106

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_9.png?id=book%3Aiot-open2nded

Figure 34: Network & WiFi view

Figure 35: Network view

Step 7
Security. In a case when an IoT device must be protected from remote hacking, one of

3.5. Programming with the Use of Scripts

107

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/rpbi_network.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_10.png?id=book%3Aiot-open2nded

the solutions is to use a Trusted Platform Modules (TPM) module following ISO/IEC 11889
standards for a secure cryptoprocessor, a dedicated microcontroller designed to secure
hardware through integrated cryptographic keys. The chip contains physical security
mechanisms to protect it from tampering, and malicious software cannot hack the TPM
security functions. Some of the TPM key advantages are:

▪ generate and store the cryptographic keys,
▪ use the TPM unique RSA key technology for platform device authentication, which is

burned into the chip,
▪ help ensure platform integrity.

The most common TPM functions are used for system integrity measurements, key
creation and use. The boot code (including firmware and OS components) is loaded
during the system boot process and can be measured and recorded in the TPM module.
The integrity measurements are used to show how the OS started and to be sure
when the correct boot software was used with the TPM-based key. Windows 10 IoT Core
supports a few TPM module standards, which can be connected to the 40-pin GPIO
connector (figure 36).

Figure 36: TPM module view

Under the TPM Configuration tab in the Windows Device, the Portal user can select the
proper communication protocol for the TPM module installed in the Raspberry Pi board.
Then, the appropriate driver for the TPM module can be installed in the Device Manager
tab (figure 37).

3. Introduction to Embedded Programming

108

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/tpm.jpg?id=book%3Aiot-open2nded

Figure 37: TPM Configuration view

RPI Windows 10 IoT Sample Project

Create Simple Hello World Application for Raspberry Pi Board
To create a simple Hello Word application under Windows 10 IoT Core, Visual Studio 2022
or newer version is needed. Visual Studio must be installed with the Universal Windows
Platform development extension (figure 38).

3.5. Programming with the Use of Scripts

109

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_11.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 38: Visual Studio UWP development view

Step 1
Create a new UWP project by choosing the Windows Universal/Blank App Project (figure
39).

Figure 39: Visual Studio Create New project view

Step 2
Configure your new project (according to Raspberry Pi Windows 10 IoT Core build version)
is presented in figure 40.

3. Introduction to Embedded Programming

110

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_development.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs2022_create_new_uwp_project.png?id=book%3Aiot-open2nded

Figure 40: Configure new project

Step 3
Choose the Target version of your device platform which Windows IoT Core will support,
as in figure 41.

Figure 41: Target platform selection tab

Step 4
Create App1 solution (figure 42).

3.5. Programming with the Use of Scripts

111

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs_2022_configure_your_new_project.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs_2022_uwp_target_platform.png?id=book%3Aiot-open2nded

Figure 42: VS 2022 project environment view

Step 5
Design the application screen by modifying the MainPage.xaml file. To add different
screen features, use the Toolbox/All XAML controls (figure 43).

Figure 43: Add TextBlock control in the MainPage.xaml

Step 6
Modify the MainPage.cs file content if you need control events programming (figure 44).

3. Introduction to Embedded Programming

112

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs_2023_uwp_project_view_.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs_2022_hello_world.png?id=book%3Aiot-open2nded

Figure 44: C# module design MainPage.xaml.cs

Step 7
Compile and run Hello solution. Choosing the Solution Platform for the x86 user will be
able to debug and run the Hello application on the computer's desktop emulator. This
step is useful for program touchscreen design but cannot test the sensors and controls
programming due to software emulator restrictions (figure 45).

Figure 45: Solution x86 platform build

Software emulators aren't capable of simulating their behaviour. Instead, the Solution
Platform must be changed to the ARM platform in the VC Solution Configuration property
to use sensors and controls. The application package must be transferred to the real IoT
device to debug. Correct configuration is present in the figure 46.

3.5. Programming with the Use of Scripts

113

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs_2023_app1_project.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs_2023_build_solution.png?id=book%3Aiot-open2nded

Figure 46: Select a hardware platform for the solution

Step 8
The user must configure the debug application settings to deploy and debug the
application package on the real IoT device. In the Debug property page, the user must
enter the proper Remote IoT device IP number (figure 47).

3. Introduction to Embedded Programming

114

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_7.png?id=book%3Aiot-open2nded

Figure 47: Set the Remote machine IP number

Step 9
Start debugging the application, and after deploying the application package to the board
SD card, it will be displayed on the monitor: Hello application is present in figure 48 and
debugging view in figure 49.

3.5. Programming with the Use of Scripts

115

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_8.png?id=book%3Aiot-open2nded

Figure 48: Hello Application on the Raspberry Pi display

Figure 49: Hello Application debugging view

C# Variables and Data Types

The C# [55] variables are categorized into the following types:

3. Introduction to Embedded Programming

116

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/hello_world_app.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/vs2022_debugging_app.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ value types,
▪ reference types,
▪ pointer types.

Value Type Variables
Value-type variables can assign a value directly. The class System.ValueType defines
them.

The value types directly contain data. Value types may be: int, char and float, storing
numbers, strings or floating point values. When an int type is declared, the system
allocates memory to store its value.

The available value types listed in C# are presented as follows (table 5):
Table 5: C# 2010 Value Definitions
Type Represents Range Default

Value

bool Boolean value True or False False

byte 8-bit unsigned integer 0 to 255 0

char 16-bit Unicode character U +0000 to U +ffff '\0'

decimal 128-bit precise decimal values with 28-29 significant
digits (–7.9 × 10E28 to 7.9 × 10E28) / 10E0 to 28 0.0M

double 64-bit double-precision floating-point type (+/–)5.0 × 10E–324 to (+/–)1.7 × 10E308 0.0D

float 32-bit single-precision floating-point type –3.4 × 10E38 to + 3.4 × 10E38 0.0F

int 32-bit signed integer type –2 147 483 648 to 2 147 483 647 0

long 64-bit signed integer type –9 223 372 036 854 775 808 to 9 223 372 036 854
775 807 0L

sbyte 8-bit signed integer type –128 to 127 0

short 16-bit signed integer type –32 768 to 32 767 0

uint 32-bit unsigned integer type 0 to 4 294 967 295 0

ulong 64-bit unsigned integer type 0 to 18 446 744 073 709 551 615 0

ushort 16-bit unsigned integer type 0 to 65 535 0

Object Type
The Object Type is an alias for the System.Object class. It is the ultimate base class for
all data types in the C# Common Type System (CTS). The object types can be assigned
with values of any other types, value types, reference types, predefined or user-defined
types. Before assigning values, the type conversion is needed.

When a value type is converted to an object type, it is called boxing; when it is converted
to a value type, it is called unboxing.

object obj;
obj = 100; //This is boxing

Dynamic Type
The data type variable can store any value. But this type of checking takes place at run-
time.

The syntax for declaring a dynamic type is:

3.5. Programming with the Use of Scripts

117

dynamic <variable_name> = value;

For example,

dynamic d = 20;

Dynamic types are similar to object types. That type checking for object type variables
takes place at compile time. For the dynamic type variables, checking takes place at run
time.

String Type
The string type allows assigning any string values to a variable. The string type is an alias
for the System.String class derived from the object type. The string type value can be
assigned using string literals in two forms: quoted and @quoted.

For example,

string str = "Tutorials Point";

A @quoted string literal looks as follows:

@"Tutorials Point";

The user-defined reference types are class, interface, or delegate.

Reference Type
The reference types don't contain the actual data stored in a variable. They contain a
reference to the variables.

Using multiple variables, the reference types can refer to a memory location. If the
variable changes the data in the memory location, the other variable automatically
reflects this change in value. Built-in reference example types are object, dynamic, and
string.

Pointer Type
Pointer-type variables store the memory address, which is another type. Pointers in C#
are similar to pointers in C or C++.

The syntax for declaring a pointer type is:

type* identifier;

For example,

char* cptr;
int* iptr;

C# Variables
Each variable in C# has a specific type, which determines the size and layout of the
variable's memory.

3. Introduction to Embedded Programming

118

The basic value types in C# can be categorised as follows:
Table 6: C# 2010 Variables

Type Example

Integral types sbyte, byte, short, ushort, int, uint, long, ulong, and char

Floating point types float and double

Decimal types decimal

Boolean types true or false values, as assigned

Nullable types Nullable data types

Variable Definitions
Variable syntax definition in C# is:

<data_type> <variable_list>;

data_type must be a valid C# data type like char, int, float, double, or any user-
defined data type. variable_list may consist of one or more identifier names separated
by commas.

Examples of valid variable definitions are shown below:

int i, j, k;
char c, ch;
float f, salary;
double d;

The variable can be initialized immediately during definition time:

int i = 100;

Variables Initialization
Variables are initialized with an equal sign followed by a constant expression. The general
initialization form looks:

variable_name = value;

Variables can be initialized during their declaration. The initializer consists of an equal
sign followed by a constant expression as:

<data_type> <variable_name> = value;

Some examples are:

int d = 3, f = 5; /* Initializing d and f */
byte z = 22; /* Initializes z */
double pi = 3.14159; /* Declares an approximation of PI */
char x = 'x'; /* The variable x has the value 'x' */

It is essential to initialize variables properly; otherwise, sometimes, it may produce
unexpected results.

3.5. Programming with the Use of Scripts

119

The following example uses various types of variables:

using System;

namespace VariableDefinition {
class Program {

static void Main(string[] args) {
short a;
int b ;
double c;
/* Actual initialization */
a = 10;
b = 20;
c = a + b;
Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c);
Console.ReadLine();

}
}

}

Output:

a = 10, b = 20, c = 30

C# Program Control Structures

C# [56] Specifying one or more conditions to be evaluated or tested by the program
requires decision-making structures. The proper statements must be performed if the
condition is true or false.

C# provides the following types of decision-making statements (table 7):
Table 7: C# 2010 Loops Definitions

Sr.No. Loop Type & Description

1 An if statement consists of a boolean expression followed by one or more statements

2 if…else statement – an if statement can be followed by an optional else statement, which executes when the boolean
expression is false

3 Nested if statements – you can use one if or else if statement inside another if or else if statement(s)

4 switch statement – a switch statement allows a variable to be tested for equality against a list of values

5 Nested switch statements – you can use one switch statement inside another switch statement(s)

6 The ? Operator

if Statement
An if statement consists of a boolean expression followed by one or more statements.
The syntax of an if statement in C# is:

if(boolean_expression) {
/* Statement(s) will execute if the boolean expression is true */

}

If the boolean expression evaluates to true, the code block inside the if statement is

3. Introduction to Embedded Programming

120

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

executed. If the boolean expression evaluates to false, the first code set after the end of
the if statement (after the closing curly brace) is executed.

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 10;

/* Check the boolean condition using if statement */
if (a < 20) {

/* If condition is true then print the following */
Console.WriteLine("a is less than 20");

}
Console.WriteLine("value of a is : {0}", a);
Console.ReadLine();

}
}

}

Output:

a is less than 20;
value of a is : 10

if…else Statement
An if statement can be followed by an optional else statement, which executes when the
boolean expression is false. The syntax of an if…else statement in C# is:

if(boolean_expression) {
/* Statement(s) will execute if the boolean expression is true */

} else {
/* Statement(s) will execute if the boolean expression is false */

}

If the boolean expression evaluates to true, then the if block of code is executed;
otherwise, else block of code is executed.

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 100;

/* Check the boolean condition */
if (a < 20) {

/* If condition is true then print the following */
Console.WriteLine("a is less than 20");

3.5. Programming with the Use of Scripts

121

} else {
/* If condition is false then print the following */
Console.WriteLine("a is not less than 20");

}
Console.WriteLine("value of a is : {0}", a);
Console.ReadLine();

}
}

}

Output:

a is not less than 20;
value of a is : 100

Nested if Statement
It is always legal in C# to nest if…else statements, which means you can use one if or
else if statement inside another if or else if statement(s). The syntax for a nested if
statement is as follows:

if(boolean_expression 1) {
/* Executes when the boolean expression 1 is true */
if(boolean_expression 2) {

/* Executes when the boolean expression 2 is true */
}

}

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
//* Local variable definition */
int a = 100;
int b = 200;

/* Check the boolean condition */
if (a == 100) {

/* If condition is true then check the following */
if (b == 200) {

/* If condition is true then print the following */
Console.WriteLine("Value of a is 100 and b is 200");

}
}
Console.WriteLine("Exact value of a is : {0}", a);
Console.WriteLine("Exact value of b is : {0}", b);
Console.ReadLine();

}
}

}

Output:

3. Introduction to Embedded Programming

122

Value of a is 100 and b is 200
Exact value of a is : 100
Exact value of b is : 200

switch Statement
A switch statement allows a variable to be tested for equality against a list of values.
Each value is called a case, and the variable switched on is checked for each switch case.

The syntax for a switch statement in C# is as follows:

switch(expression) {
case constant-expression :

statement(s);
break; /* Optional */

case constant-expression :
statement(s);
break; /* Optional */

/* You can have any number of case statements */
default : /* Optional */
statement(s);

}

The following rules apply to a switch statement.

1. The expression in a switch statement must have an integral or enumerated type
or a class type in which the class has a single conversion function to an integral or
enumerated type.

2. You can have any number of case statements within a switch. Each case is followed
by the value to be compared to and a colon.

3. The constant expression for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal.

4. When the variable switched on is equal to a case, the statements following that case
will execute until a break statement is reached.

5. When a break statement is reached, the switch terminates, and the control flow
jumps to the next line following the switch statement.

6. Not every case needs to contain a break. If no break appears, the control flow will fall
through to subsequent cases until a break is reached.

7. A switch statement can have an optional default case, which must appear at the end
of the switch. The default case can be used for performing a task when none of the
cases is true. No break is needed in the default case.

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
/* Local variable definition */
char grade = 'B';

switch (grade) {

3.5. Programming with the Use of Scripts

123

case 'A':
Console.WriteLine("Excellent!");
break;

case 'B':
case 'C':

Console.WriteLine("Well done");
break;

case 'D':
Console.WriteLine("You passed");
break;

case 'F':
Console.WriteLine("Better try again");
break;

default:
Console.WriteLine("Invalid grade");
break;

}
Console.WriteLine("Your grade is {0}", grade);
Console.ReadLine();

}
}

}

Output:

Well done
Your grade is B

Nested switch Statement
It is possible to have a switch as part of an outer switchstatement sequence. No
conflicts will arise even if the case constants of the inner and outer switch contain
common values.

The syntax for a nested switch statement is as follows:

switch(ch1) {
case 'A':

Console.WriteLine("This A is part of outer switch");

switch(ch2) {
case 'A':

Console.WriteLine("This A is part of inner switch");
break;

case 'B': /* Inner B case code */
}
break;
case 'B': /* Outer B case code */

}

Example:
<code C>
using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
int a = 100;

3. Introduction to Embedded Programming

124

int b = 200;

switch (a) {
case 100:

Console.WriteLine("This is part of outer switch ");

switch (b) {
case 200:

Console.WriteLine("This is part of inner switch ");
break;

}
break;

}
Console.WriteLine("Exact value of a is : {0}", a);
Console.WriteLine("Exact value of b is : {0}", b);
Console.ReadLine();

}
}

}

Output:

This is part of outer switch
This is part of inner switch
Exact value of a is : 100
Exact value of b is : 200

C# Looping

C# [57] provides the following types of loops to handle looping requirements, listed in
table 8.

Table 8: C# 2010 Loops Definitions
Sr.No. Loop Type & Description

1 while loop – it repeats a statement or a group of statements while a given condition is true. It tests the condition before
executing the loop body

2 for loop – it executes a sequence of statements multiple times and abbreviates the code that manages the loop variable

3 do…while loop – it is similar to a while statement, except that it tests the condition at the end of the loop body

4 Nested loop – you can use one or more loop inside any another while, for or do…while loop

while Loop
A while loop statement in C# repeatedly executes a target statement if a given condition
is true.

while(condition) {
statement(s);

}

Example:

using System;

3.5. Programming with the Use of Scripts

125

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

namespace Loops {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 10;

/* while loop execution */
while (a < 20) {

Console.WriteLine("value of a: {0}", a);
a++;

}
Console.ReadLine();

}
}

}

Output:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

for Loop
A for loop is a repetition control structure that allows you to efficiently write a loop that
needs to be executed a specific number of times. The syntax of a for loop in C# is:

for (init; condition; increment) {
statement(s);

}

Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to declare and
initialise any loop control variables. You are not required to put a statement here as
long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If false,
the loop's body does not run, and the control flow jumps to the next statement just
after the for loop.

3. After the body of the for loop executes, the control flow returns to the increment
statement. This statement allows you to update any loop control variables. This
statement can be left blank if a semicolon appears after the condition.

4. The condition is now re-evaluated. If it is true, the loop executes, and the process
repeats itself (body of the loop, then increment step, and then again testing for a
condition). After the condition becomes false, the for loop terminates.

Example:

3. Introduction to Embedded Programming

126

using System;
namespace Loops {

class Program {
static void Main(string[] args) {

/* for loop execution */
for (int a = 10; a < 20; a = a + 1) {

Console.WriteLine("value of a: {0}", a);
}
Console.ReadLine();

}
}

}

Output:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

do…while Loop
The syntax of a do…while loop in C# is:

do {
statement(s);

} while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s)
execute once before the condition is tested.

If the condition is true, the control flow returns to do, and the statement(s) in the loop
execute again. This process repeats until the given condition becomes false. Example:

using System;

namespace Loops {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 10;

/* do loop execution */
do {

Console.WriteLine("value of a: {0}", a);
a = a + 1;

}
while (a < 20);
Console.ReadLine();

}

3.5. Programming with the Use of Scripts

127

}
}

Output:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

Nested for Loop
C# allows using one loop inside another loop (loop nesting). The following section shows
a few examples to illustrate the concept. The syntax for a nested for loop statement in
C# is as follows:

for (init; condition; increment) {
for (init; condition; increment) {

statement(s);
}
statement(s);

}

The syntax for a nested while loop statement in C# is as follows:

while(condition) {
while(condition) {

statement(s);
}
statement(s);

}

The syntax for a nested do…while loop statement in C# is as follows:

do {
statement(s);
do {

statement(s);
}
while(condition);

}
while(condition);

A final note on loop nesting is that you can put any loop inside any other type. For
example, a for loop can be inside a while loop or vice versa. Example:

using System;

namespace Loops {

3. Introduction to Embedded Programming

128

class Program {
static void Main(string[] args) {
/* local variable definition */
int i, j;

for (i = 2; i < 100; i++) {
for (j = 2; j <= (i / j); j++)

if ((i % j) ** 0) break; // if factor found, not prime
if (j > (i / j)) Console.WriteLine("{0} is prime", i);

}
Console.ReadLine();

}
}

}

Output:

2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime

Infinite Loop
A loop becomes an infinite loop if a condition never becomes false. The for loop is
traditionally used for this purpose. Since none of the three expressions that form the for
loop is required, you can make an endless loop by leaving the conditional expression
empty.

Example:

using System;

namespace Loops {
class Program {

static void Main(string[] args) {
for (; ;) {

3.5. Programming with the Use of Scripts

129

Console.WriteLine("Hey! I am Trapped");
}

}
}

}

When the conditional expression is absent, it is assumed to be true.

C# Object-Oriented Programming

C# object-oriented programming does not differ much from the C++ model. Below there
are major C# class components along with samples.

C# Classes
Defining a Class
A C# [58] class definition starts with the keyword class followed by the class name and
the class body enclosed by a pair of curly braces. Following is the general form of a class
definition:

<access specifier> class class_name {
//Member variables
<access specifier> <data type> variable1;
<access specifier> <data type> variable2;
...
<access specifier> <data type> variableN;
//Member methods
<access specifier> <return type> method1(parameter_list) {

//Method body
}
<access specifier> <return type> method2(parameter_list) {

//Method body
}
...
<access specifier> <return type> methodN(parameter_list) {

//Method body
}

}

Note:

▪ access specifiers specify the access rules for the members and the class itself. If
not mentioned, then the default access specifier for a class type is internal. Default
access for the members is private;

▪ data type specifies the type of variable, and return type specifies the data type of the
data the method returns, if any;

▪ to access the class members, you use the dot (.) operator;
▪ the dot operator links an object's name with a member's name.

Example:

3. Introduction to Embedded Programming

130

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

using System;

namespace BoxApplication {

class Box {
public double length; //Length of a box
public double breadth; //Breadth of a box
public double height; //Height of a box

}
class Boxtester {

static void Main(string[] args) {
Box Box1 = new Box(); //Declare Box1 of type Box
Box Box2 = new Box(); //Declare Box2 of type Box
double volume = 0.0; //Store the volume of a box here

//Box1 specification
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;

//Box2 specification
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0;

//Volume of Box1
volume = Box1.height * Box1.length * Box1.breadth;
Console.WriteLine("Volume of Box1 : {0}", volume);

//Volume of Box2
volume = Box2.height * Box2.length * Box2.breadth;
Console.WriteLine("Volume of Box2 : {0}", volume);
Console.ReadKey();

}
}

}

Output:

Volume of Box1 : 210
Volume of Box2 : 1560

Member Functions and Encapsulation
A member function of a class is a function that has its definition or its prototype within
the class definition similar to any other variable. It operates on an object of the class of
which it is a member and has access to all the members of a class for that object.

Member variables are the attributes of an object (from the design perspective), and they
are kept private to implement encapsulation. These variables can only be accessed using
the public member functions.

Sample:

using System;

namespace BoxApplication {
class Box {

3.5. Programming with the Use of Scripts

131

private double length; //Length of a box
private double breadth; //Breadth of a box
private double height; //Height of a box

public void setLength(double len) {
length = len;

}
public void setBreadth(double bre) {

breadth = bre;
}
public void setHeight(double hei) {

height = hei;
}
public double getVolume() {

return length * breadth * height;
}

}
class Boxtester {

static void Main(string[] args) {
Box Box1 = new Box(); //Declare Box1 of type Box
Box Box2 = new Box();
double volume;

//Declare Box2 of type Box
//Box1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);

//Box2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);

//Volume of Box1
volume = Box1.getVolume();
Console.WriteLine("Volume of Box1 : {0}" ,volume);

//Volume of Box2
volume = Box2.getVolume();
Console.WriteLine("Volume of Box2 : {0}", volume);

Console.ReadKey();
}

}
}

Output:

Volume of Box1 : 210
Volume of Box2 : 1560

C# Constructors
A class constructor is a special member function of a class that is executed whenever we
create new objects of that class.

A constructor has the same name as that of a class and does not have any return type.

3. Introduction to Embedded Programming

132

Example:

using System;

namespace LineApplication {
class Line {

private double length; //Length of a line

public Line() {
Console.WriteLine("Object is being created");

}
public void setLength(double len) {

length = len;
}
public double getLength() {

return length;
}

static void Main(string[] args) {
Line line = new Line();

//Set line length
line.setLength(6.0);
Console.WriteLine("Length of line : {0}", line.getLength());
Console.ReadKey();

}
}

}

Output:

Object is being created
Length of line : 6

A default constructor has no parameter, but you can make one if you need to pass
some setup values on the initialisation - such constructors are called parameterised
constructors. This technique helps you to assign an initial value to an object at the time
of its creation.

Example:

using System;

namespace LineApplication {
class Line {

private double length; //Length of a line

public Line(double len) { //Parameterized constructor
Console.WriteLine("Object is being created, length = {0}", len);
length = len;

}
public void setLength(double len) {

length = len;
}
public double getLength() {

return length;
}

3.5. Programming with the Use of Scripts

133

static void Main(string[] args) {
Line line = new Line(10.0);
Console.WriteLine("Length of line : {0}", line.getLength());

//Set line length
line.setLength(6.0);
Console.WriteLine("Length of line : {0}", line.getLength());
Console.ReadKey();

}
}

}

Output:

Object is being created, length = 10
Length of line : 10
Length of line : 6

C# Destructors
A destructor is a special member function of a class executed whenever an object of its
class goes out of scope. A destructor has the same name as the class with a prefixed tilde
(~), and it can neither return a value nor take any parameters. C# (.NET environment)
has a built-in memory management system that tracks unused objects and releases
memory automatically. Still, in constrained memory systems like RPI, it is sometimes
essential to manually notify this mechanism about the possibility of releasing memory
once the object is no longer used. Here, destructor helps much. Moreover, the destructor
can handle hardware-related issues, e.g. close connection, sending a farewell message
to the external device, etc. Destructors cannot be inherited or overloaded.

Example:

using System;

namespace LineApplication {
class Line {

private double length; //Length of a line

public Line() { //Constructor
Console.WriteLine("Object is being created");

}
~Line() { //destructor

Console.WriteLine("Object is being deleted");
}
public void setLength(double len) {

length = len;
}
public double getLength() {

return length;
}
static void Main(string[] args) {

Line line = new Line();

//Set line length
line.setLength(6.0);
Console.WriteLine("Length of line : {0}", line.getLength());

}

3. Introduction to Embedded Programming

134

}
}

Output:

Object is being created
Length of line : 6
Object is being deleted

Static Members of a C# Class
We can define class members as static using the static keyword. When we declare a class
member as static, no matter how many class objects are created, there is only one copy
of the static member.

The keyword static implies that only one instance of the member exists for a class.
Static variables are used for defining constants because their values can be retrieved by
invoking the class without creating an instance. Static variables can be initialised outside
the member function or class definition. You can also initialise static variables inside the
class definition.

Example:

using System;

namespace StaticVarApplication {
class StaticVar {

public static int num;

public void count() {
num++;

}
public int getNum() {

return num;
}

}
class StaticTester {

static void Main(string[] args) {
StaticVar s1 = new StaticVar();
StaticVar s2 = new StaticVar();

s1.count();
s1.count();
s1.count();

s2.count();
s2.count();
s2.count();

Console.WriteLine("Variable num for s1: {0}", s1.getNum());
Console.WriteLine("Variable num for s2: {0}", s2.getNum());
Console.ReadKey();

}
}

}

Output:

3.5. Programming with the Use of Scripts

135

Variable num for s1: 6
Variable num for s2: 6

You can also declare a member function as static. Such functions can access only static
variables. The static functions exist even before the object is created. Example:

using System;

namespace StaticVarApplication {
class StaticVar {

public static int num;

public void count() {
num++;

}
public static int getNum() {

return num;
}

}
class StaticTester {

static void Main(string[] args) {
StaticVar s = new StaticVar();

s.count();
s.count();
s.count();

Console.WriteLine("Variable num: {0}", StaticVar.getNum());
Console.ReadKey();

}
}

}

Output:

Variable num: 3

C# Events
Events occur when a user makes actions like a key press, clicks, mouse movements,
etc., or some other occurrence such as system-generated notifications. Applications must
respond to events if they occur, e.g. handle interrupts. Events are used during inter-
process communication.

Using Delegates With Events
The events are declared and raised in a class. They are associated with the event
handlers using delegates within the same or some other class. To publish the event, the
class containing it must be defined. It is called the publisher class. Another class that
accepts this event is called the subscriber class. Events use the publisher-subscriber
model.

The object containing a definition of the event and the delegate is named publisher. The
event-delegate association is also defined in this object. A publisher class object invokes
the event and is notified to other objects.

A subscriber is an object that accepts the event and provides an event handler. The

3. Introduction to Embedded Programming

136

delegate in the publisher class invokes the method (event handler) of the subscriber
class.

Declaring Events
First, a delegate type for the event must be declared to declare an event inside a class.
For example,

public delegate string MyDel(string str);

Next, the event itself is declared using the event keyword:

event MyDel MyEvent;

The preceding code defines a delegate named MyDel and an event named MyDel, which
invokes the delegate when it is raised.

Example:

using System;

namespace SampleApp {
public delegate string MyDel(string str);

class EventProgram {
event MyDel MyEvent;

public EventProgram() {
this.MyEvent += new MyDel(this.WelcomeUser);

}
public string WelcomeUser(string username) {

return "Welcome " + username;
}
static void Main(string[] args) {

EventProgram obj1 = new EventProgram();
string result = obj1.MyEvent("Tutorials Point");
Console.WriteLine(result);

}
}

}

Output:

Welcome Tutorials Point

3.5. Programming with the Use of Scripts

137

4. Embedded Communication

IoT systems and related data flows are typically structured into three primary layers 50,
eventually into five 51, which is less popular and mainly used in advanced research [59]
[60].
The lowest layer is the Perception (physical, acquisition) Layer, the intermediate is the
Network Layer, and the higher is the Application Layer. The function of the Perception
layer is to keep in contact with the physical environment. Devices working in this layer
are designed as embedded systems with a network module. The modern embedded
device includes a microcontroller, sensors, and actuators. External memories and typical
microcomputer peripherals are usually built into the microcontroller, so they do not
require a special connection. Sensors are elements that convert a value of some physical
parameter into an electrical signal, while actuators are elements that control
environmental parameters. Sensors and actuators are interfaced with the microcontroller
using different connection types, including simple digital or analogue connections or
much more complex communication links and protocols. IoT nodes in the Perception
layer communicate with higher layers using more complex data transmission methods.
The wireless transmission protocols between the Perception layer and other layers are
described in communications_and_communicating_sut.

Figure 50: IoT architecture, 3-layered

4. Embedded Communication

138

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/en/iot-open/communications_and_communicating_sut
https://www.roboticlab.eu/homelab/_detail/en/iot-open/iot_architectures_stack-3_layer_iot_architecture.drawio.png?id=book%3Aiot-open2nded

Figure 51: IoT architecture, 5-layered

This chapter describes some popular internal protocols used to communicate between
microcontrollers and other electronic elements called “embedded protocols”.

The embedded protocol that can be used in specific implementation depends mainly on
the type of peripheral element. The method of connection and data exchange strictly
depends on the kind of element. Some parts are analogue sensors that should be
connected to an analogue-digital converter; some can be connected to digital pins
working as inputs (for sensors) or outputs (for actuators).

Analog
Simple sensors do not implement the conversion and communication logic, and the
output is just the analogue signal – voltage level, depending on the value of the measured
parameter. It needs to be further converted into a digital representation; this process can
be made by the Analogue to Digital Converters (ADC), implemented as the internal part
of a microcontroller or separate integrated circuit. Examples of sensors with analogue
output are a photoresistor, thermistor, potentiometer, and resistive touchscreen. ADC
conversion is a process of conversion of the continuous-time signal into a discrete one. It
has 2 crucial parameters to consider:

▪ Sampling rate: usually measured in Hz (kHz, MHz) is a sampling frequency, or in other
words, defines a time period between two consecutive reads. A Nyquist-Shannon
theorem defines minimum sampling frequency. Oversampling (using higher than
Nyquist-Shannon) is common because many ADC converters built into the MCUs tend
to be noisy due to the electromagnetic inference of other components, such as e.g.
built-in radio. Oversampling brings the capability to average consecutive reads and
obtain more reliable and less noisy ADC conversion.

▪ Sampling resolution: measured in bits, defines the minimum change in the input
voltage the device can measure, e.g. 12-bit resolution brings 4096 values mapped

4. Embedded Communication

139

https://www.roboticlab.eu/homelab/_detail/en/iot-open/iot_architectures_stack-5_layer_iot_architecture.drawio.png?id=book%3Aiot-open2nded

to the input range. The ideal ADC converter linearly maps the discrete values to
the voltage input range. Still, in real-life applications, input characteristics of the
ADC used to be non-linear, and software correction may be required once input
characteristics are evaluated.

It is worth noting that each ADC has its useable input range (voltage), and the input
and analogue signal should be altered accordingly. In real applications, input signal
adaptation requires external electronics; thus, many ADC converters provide the ability
to amplify the input signal, and it can be programmed.

Digital
Simple, true/false information can be processed via digital I/O. Most devices use positive
logic, where, e.g. +5 V (TTL) or +3.3 V (the most popular, yet other voltage standards
exist) presents a logical one, also referenced as HIGH. In contrast, 0V gives a logical
zero, referenced as LOW. In real systems, this bounding is fuzzy. It brings some tolerance,
simplifying, e.g. communication from 3.3 V output to 5 V input, without a need for the
conversion (note, the reverse conversion is usually not so straightforward, as 3.3 V inputs
driven by the 5V output may burn quickly). A sample sensor providing binary data is a
button (On/Off).
Alternating HIGH and LOW constitutes a square wave signal, usually used as a clock
signal (when symmetrical) or used to control the power delivered to the external devices
with means of so-called PWM.

Communication Protocols
Elements that need more data to be transferred (e.g. displays) usually use some digital
data transmission protocol. It is often a serial protocol, meaning that data is transmitted
bit by bit. Serial communication can be done in three modes.

▪ In simplex mode, only one of the two devices on a link can transmit; the other can
only receive. The simplex mode can use the entire capacity of the channel to send
data.

▪ In half-duplex mode, each station can transmit and receive, but not simultaneously.
When one device sends, the other can only receive, and vice versa.

▪ In full-duplex mode, both stations can transmit and receive simultaneously. The link
must contain two physically separate transmission paths, one for sending and the
other for receiving.

Serial data transmission can be done synchronously or asynchronously. In synchronous
data transmission, bits are synchronized with a clock signal common to the transmitter
and receiver. Examples of synchronous protocols are TWI (Two Wire Interface) and SPI
(Serial Peripheral Interface). Asynchronous data transmission does not need any separate
synchronization signal, but the transmitter and receiver must use the exact timings, and
synchronization information must be included in the information transmitted. Examples
of asynchronous interfaces implemented in microcontrollers are 1-Wire and UART
(Universal Asynchronous Receiver Transmitter).

4. Embedded Communication

140

4.1. PWM

The PWM signal controls the energy delivered to the device, usually a DC motor, LED
light, bulb, etc. To control voltage, instead of using inefficient resistance-based voltage
dividers (where the remaining part of the voltage is distracted as heat), PWM is based
on approximating the energy delivered to the device with periodical switching on and
off (HIGH and LOW). Only two voltages are delivered to the device: low (0V) and HIGH
(Vcc, e.g. +5V). One can easily observe how PWM works, e.g. when dimming the LED, if
recorded with a high fps camera: the LED light flashes with the PWM signal frequency.
PWM controls, in fact, the ratio between HIGH and LOW signals in one period: the higher
the ratio, the more energy is being delivered to the device. It is called a duty cycle. A
perfect square wave signal, usually referenced as a clock signal, has a duty cycle of 50%
(or 0.5); thus, its energy is half of the energy that can be carried when the signal is HIGH
all the time. An LED light with a duty cycle of 100% will be fully bright, and with a duty
cycle of 0 will be off.

A 50% duty cycle does not necessarily transfer
straightforwardly to 50% of brightness or 50% of maximum
rpm of the DC motor rotation, as characteristics of the devices
regarding the voltage and energy provided to their input may
be non-linear.

Some devices are fragile to the changes and cannot accept
instant on and off. For this reason, we can use a capacitor that
acts as an intermediate energy accumulator and thus flattens
the characteristics to be more linear.

PWM signal is then characterised by the following:

▪ voltage (values when HIGH and LOW),
▪ frequency,
▪ duty cycle.

Generating PWM
In microcontrollers, PWM used to be generated with timers and interrupts to ensure
asynchronous operation and stability of the operation. Due to the digital nature of the
signal generation, a duty cycle generation precision is given by the PWM timer resolution.
An 8-bit resolution splits a period into 256 chunks, and a single chunk defines the
minimum time one can increment or decrement the duty cycle. Modern MCUs provide
developers with much higher resolution, even up to 14-bit.

4.1. PWM

141

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

A frequency of 5kHz is equivalent to 0.2ms period that can be controlled in steps of 0.2/
256 ms ~= 781 ns.
Sample visualisation of the 5kHz PWM signal (3.3V) is presented in the following figures,
with a duty cycle of, respectively:

▪ 50/256→~39us (19.5%) in image 52,
▪ 100/256→~78us (28%) in image 53,
▪ 150/256→~117us (58.6%) in image 54,
▪ 200/256→~156us (78.1%) in image 55,
▪ 250/255→~195us (98%) in image 56.

Figure 52: Visualisation of the 5kHz PWM signal with a duty cycle of 19.5%

Figure 53: Visualisation of the 5kHz PWM signal with a duty cycle of 28%

4. Embedded Communication

142

https://www.roboticlab.eu/homelab/_detail/en/iot-open/embeddedcommunicationprotocols2/pwm_1.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/embeddedcommunicationprotocols2/pwm_2.png?id=book%3Aiot-open2nded

Figure 54: Visualisation of the 5kHz PWM signal with a duty cycle of 58.6%

Figure 55: Visualisation of the 5kHz PWM signal with a duty cycle of 78.1%

4.1. PWM

143

https://www.roboticlab.eu/homelab/_detail/en/iot-open/embeddedcommunicationprotocols2/pwm_3.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/embeddedcommunicationprotocols2/pwm_4.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/embeddedcommunicationprotocols2/pwm_5.png?id=book%3Aiot-open2nded

Figure 56: Visualisation of the 5kHz PWM signal with a duty cycle of 98%

Because of the limited hardware resources, an increase in
PWM generation resolution or PWM signal frequency may
cause an inability to generate a signal or instability of the
PWM generation process. Always refer to the MCU's hardware
specification for details on the PWM signal limits.

A voltage delivered to the device powered with a PWM signal can be calculated as an
integral of the PWM signal over time: e.g., a 50% duty cycle of the 5V signal is equivalent
to the delivery of the constant 2.5V.

4. Embedded Communication

144

4.2. SPI

One of the most popular interfaces to connect different external devices is SPI (Serial
Peripheral Interface). It is a synchronous serial interface and protocol that can transmit
data with speeds up to 20 Mbps. SPI is used to communicate microcontrollers with one
or more peripheral devices over short distances – usually internally in the device. High
transmission speed enables SPI to be suitable even for sending animated video data to
colourful displays. In SPI connection, there is always one master device, in most cases
the microcontroller (μC) that controls the transmission, and one or more slave devices –
peripherals. To communicate, SPI uses three lines common to all connected devices and
one enabling line for every slave element (table 9).

Table 9: SPI Lines
Line Description Direction

MISO Master In Slave Out peripheral → μC

MOSI Master Out Slave In μC → peripheral

SCK Serial Clock μC → peripheral

SS Slave Select μC → peripheral

The MISO line is intended to send bits from slave to master, the MOSI wire transmits
data from master to slave, and the SCK line sends clock pulses that synchronise data
transmission. The master device always generates the clock signal. Every SPI-compatible
device has the SS (Slave Select) input that enables communication in this specific device.
Master is responsible for generating this enable signal – separately for every slave in the
system, as present in figure 57.

Figure 57: Sample SPI connection

SPI is used in many electronic elements:

▪ analogue to digital converters (ADC),
▪ real-time clocks (RTC),
▪ EEPROMs,
▪ LCD, OLED, and e-paper displays,
▪ communication interfaces (e.g. Ethernet, WiFi),

4.2. SPI

145

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ and many others.

Due to different hardware implementations, there are four SPI protocol operation modes
(table 10). The mode used in the master must fit the mode implemented in the slave
device.

Table 10: SPI Modes
Mode Clock polarity Clock phase Idle state Active state Output edge Data capture

mode 0 0 0 0 1 falling rising

mode 1 0 1 0 1 rising falling

mode 2 1 0 1 0 rising falling

mode 3 1 1 1 0 falling rising

It results in different timings of the clock signal concerning the data sent (figure 58). Clock
polarity = 0 means that the idle state of the SCK is 0, so every data bit is synchronised
with the pulse of logic 1. Clock polarity = 1 reverses these states. Output edge (rising/
falling) says at which edge of active SCK signal sender puts a bit on the data line. The
data capture edge says at what edge of SCK signal data should be captured by the
receiver.

Figure 58: Sample SPI timing

4.2.1. QSPI
Even if a 20MHz frequency ensures good transmission speed, it can be too slow for some
use. Some modern microcontrollers use external flash memory for program storage and
execute programs from internal SRAM memory, downloading executable code in chunks
as required. This requires a higher data rate to avoid stalls in program execution. A
QSPI (Quad-SPI) link was developed to achieve higher transmission speed. It has four
bidirectional data lines instead of two unidirectional to increase speed four times (figure
59). Additionally, it supports higher clock frequency, increasing speed even higher,
currently more than 100MBps. Operation of QSPI requires a special protocol with a set of
commands, so hardware implementation is much more complex than the original SPI.

4. Embedded Communication

146

Figure 59: Sample QSPI connection

4.2. SPI

147

4.3. TWI (I2C)

TWI (Two Wire Interface) is one of embedded systems' most popular communication
links and protocols. Philips has designed it as an I2C (Inter-Integrated Circuit) for audio-
video appliances controlled by the microprocessor. Many chips can be connected to the
processor with this interface, including:

▪ EEPROM memory chips,
▪ RAM memory chips,
▪ AD/DA converters,
▪ real-time clocks,
▪ sensors (temperature, pressure, gas, air pollution),
▪ port extenders,
▪ displays,
▪ specialised AV circuits.

TWI, as the name says, uses two wires for communication. One is the data line (SDA);
the second is the clock line (SCL). Both lines are common to all circuits connected to
the one TWI bus. The method of communication of TWI is the master-slave synchronous
serial transmission. It means that data is sent bit after bit synchronised with the clock
signal. The SCL line is always controlled by the master unit (usually the microcontroller);
the signal on the SDA line is generated by the master or one of the slaves – depending on
the direction of communication. Sample connection is present in figure 60. The frequency
rate of the transmission is up to 100 kHz for most of the chips; for some, it can be higher
– up to 400 kHz. The new implementation allows an even higher frequency rate, reaching
5 MHz. At the output side of units, the lines have the open-collector or open-drain circuit.
This means that external pullup resistors are needed to ensure the proper operation of
the TWI bus. The value of these resistors depends on the number of connected elements,
the speed of transmission, and the power supply voltage. It can be calculated with the
formulas presented, e.g. in the Texas Instrument Application Report [61]. Usually, it is
assumed between 1 kΩ and 4.7 kΩ.

4. Embedded Communication

148

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 60: Sample TWI connection

The data is sent using frames of bytes. Every frame begins with a sequence of signals
called the start condition. Slaves detect this sequence, which causes them to collect the
next eight bits that form the address byte – unique for every circuit on the bus. If one
of the slaves recognises its address remains active until the end of the communication
frame, others become inactive. To inform the master that some unit has been
appropriately addressed slave responses with the acknowledge bit – it generates one bit
of low level on the SDA line (the master generates clock pulse). After sending the proper
address, data bytes are sent. The direction of the data bytes is controlled by the last bit
of the address; for 0, data is transmitted by the master (Write), and for 1, data is sent by
the slave (Read). The receiving unit must acknowledge every full byte (eight bits). There
is no limitation on the number of data bytes in the frame; for example, samples from the
AD converter can be read continuously byte after byte. At the end of the frame, another
special sequence is sent by the master–stop condition. It is also possible to generate
another start condition without the stop condition. It is called a repeated start condition.
Sample TWI fame is present in figure 61.

Figure 61: TWI frame

Address byte only activates one chip on the bus, so every unit must have a unique
physical address. This byte usually consists of three elements: a 4-bit field fixed by the
producer. This 3-bit field can be set by connecting three pins of the chip to 0 (ground)
or 1 (power supply line), a 1-bit field for setting the direction of communication (R/#W).
Some elements (e.g. EEPROM memory chips) use the 3-bit field for internal addressing,

4.3. TWI (I2C)

149

so only one such circuit can be connected to one bus. There are no special rules for
the data bytes. The first data byte sent by the master can be used to configure the
slave chip. In memory units, it is used for setting the internal address of the memory
for writing or reading in multi-channel AD converters to choose the analogue input.
Detailed information on the meaning of every bit of the transmission is present in the
documentation of the specific integrated circuit. The I2C standard also defines the multi-
master mode, but in most small projects, there is one master device only.

4. Embedded Communication

150

4.4. 1-Wire

1-Wire is a master-slave communication asynchronous bus interface designed formerly
by Dallas Semiconductor Corp[62]. It can transmit data at long distances at the cost of
transmission speed. The typical data speed of the 1-Wire interface is about 16.3 kbit/
s, and the maximum length is approx. 300m. Name 1-Wire comes from the feature that
the data line can directly power elements connected to the bus. A network chain of
1-Wire devices consists of one master device and many slave devices (figure 62). Such
a chain is called a MicroLAN. 1-Wire devices may be a part of a product's circuit board, a
single component device such as a temperature probe, or a remote device for monitoring
purposes.

Each 1-Wire device must contain a logic unit to operate on the bus. A dedicated bus
converter is needed to connect a 1-wire bus to a PC. The most popular PC/1-Wire
converters use a USB plug to connect to the PC and the RJ11 connectors (telephones
6P2C/6P4C modular plugs) for MicroLAN. 1-Wire devices can also be connected directly to
the microcontroller boards.

Protocol Description
Within the MicroLAN, there is always one master device, typically a PC or a
microcontroller unit. The master always initiates activity on the bus to avoid collisions on
the network chain. If a collision occurs, the master device retries the communication. In
the 1-Wire network, many devices can share the same bus line. To identify devices in the
MicroLAN, each connected device has a unique 64-bit ID number. The ID number's least
significant byte defines the type of the device (temperature, voltage, etc.). The most
significant byte represents a standard 8-bit CRC. The 1-Wire protocol description contains
several broadcast commands and commands used to address the selected device. The
master sends a selection command, then the address of the selected slave device. This
way, the following command is executed only by the addressed device. The 1-Wire bus
implements an enumeration procedure that allows the master to get information about
the ID numbers of all connected slave devices to the MicroLAN network. The device
address includes the device type, identifying what type of slaves are connected to the
network chain. The 64-bit address space is searched as a binary tree. It makes it possible
to find up to 75 devices per second.

The physical implementation of the 1-Wire network is based on an open drain master
device connected to one or more open drain slaves. One single pull-up resistor for all
devices pulls the bus up to 3/5 V and can be used to power the slave devices. 1-Wire
communication starts when a master or slave sets the bus to low voltage (connects the
pull-up resistor to ground through its output MOSFET).

4.4. 1-Wire

151

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 62: 1-Wire bus connection

The 1-Wire protocol allows for bursting the communication speed up by 10 factors. In this
case, the master starts a transmission with a reset pulse, pulling down the data line to 0
volts for at least 480 µs. It resets all slave devices in the network chain bus. Then, any
slave device shows it exists, generating the “presence” pulse. It holds the data line low
for at least 60 µs after the master releases the bus. To send a “1”, the bus master sends a
1–15 µs low pulse. To send a “0”, the master sends a 60 µs low pulse. The negative edge
of the pulse is used to start a slave's monostable multivibrator. The slave's multivibrator
clocks to read the data bus about 30 µs after the falling edge. The slave's multivibrator
has analogue tolerances that affect its timing accuracy, for the “0” pulses are 60 µs long,
and “1” pulses are limited to a max of 15 µs. When the designed solution doesn't contain
a dedicated 1-Wire interface peripheral, a UART can be used as a 1-Wire master. Dallas
also offers Serial or USB “bridge” chips, which are very useful when the distance between
devices is long (greater than 100 m). For longer, up to 300 m buses, the simple twisted
pair telephone cable can be used. It will require adjustment of pull-up resistances from 5
kΩ to 1 kΩ. The basic sequence is a reset pulse followed by an 8-bit command, and after
it, data can be sent/received in groups of 8-bits. In the case of transmission errors, the
weak data protection 8-bit CRC checking procedure can be used.

To find the devices, the enumeration broadcast command must be sent by a master. The
slave device responds with all ID bits to the master, and at the end, it returns a 0.

Sample 1-Wire timings are present in figures 63, 64 and 65.

Figure 63: 1-Wire reset timings

4. Embedded Communication

152

Figure 64: 1-Wire read timings

Figure 65: 1-Wire write timings

1-Wire Products
The Dallas/Maxim integrated 1-Wire devices list contains many implementations. The
1-Wire protocol can be quickly implemented into the current IoT boards; most
manufacturers share the software libraries, allowing developers to include them in their
projects in C, C++, and assembly languages. The 1-Wire sensors (temperature, humidity,
pressure, etc.) are factory-calibrated and read the physical measurements following the
International System of Units (SI). 1-Wire products can be grouped as follows:

▪ secure authenticators,
▪ memory EPROM, EEPROM ROM,
▪ temperature sensors and temperature switches,
▪ data loggers,
▪ 1-Wire interface products,
▪ battery monitors, protectors, and selectors,
▪ battery ID and authentication,
▪ timekeeping and real-time clocks.

4.4. 1-Wire

153

4.5. UART

UART name is an abbreviation of Universal Asynchronous Receiver Transmitter. It is one
of the most often used communication methods, traditionally named serial interface or
serial port. In contrast to previously presented interfaces, UART uses direct point-to-point
communication. UART is the communication unit implemented in microcontrollers rather
than the communication protocol. It sends the series of bits via the TxD pin and receives
a stream of bits with the RxD pin (figure 66). It is important to remember that pin TxD
from one device should be connected to pin RxD in another device. This is a general rule,
but please always check the documentation for some non-standard markings.

Figure 66: UART connection

The transmission speed and bit duration must be the same at the transmitter and
receiver to properly transmit data. Although the transmission speed can be freely chosen,
some standard, commonly used baud rates exist. They differ from 300 to 115200 bits
per second. Higher baud rates are also available in modern microcontrollers, like 230400,
250000, 500000, 1M, 2M or 3Mbps. In UART, data is sent in frames. The frame begins
with the start bit of value “zero”. Next, from five to eight data bits are transmitted. Next,
an optional parity bit can appear. The frame is finished with the stop bit of value “one”.
Stop bit can be prolonged to 1.5 or 2 times the standard bit duration. After at least one
stop bit, the next frame can be sent, beginning with a start bit. Start and stop bits are
used to synchronise the receiver and transmitter. Sample transmission flow is present in
figure 67.

Figure 67: UART frame

UART, namely Serial Port, is used in many modern microcontrollers to upload the
executable program, debug, and as the standard input/output for the user interface. For
example, in Arduino, functions that operate on the serial port are included in a common

4. Embedded Communication

154

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

set of built-in functions.

Many modern PC computers (except industrial ones) do not
have a serial port exposed, so USB to serial converters must
be used. Some development boards have a USB-serial
converter on board (e.g. Arduino Uno, NodeMCU, STM Nucleo,
etc.)

Even if a PC computer has a serial port, it is usually compatible
with the RS-232 standard. It uses the same frame structure
but different voltage levels (with opposite zero-one encoding,
known as reverse logic).

4.5. UART

155

5. IoT Hardware Overview

IoT hardware infrastructure is mainly inherited from the embedded systems of the
SoC type for Edge class IoT devices and from PCs for Fog class. As IoT devices are
by their nature network-enabled, many of the existing embedded platforms evolved
towards network-enabled solutions, sometimes indirectly through delivering network
communication module (wired or wireless) as an external device yet integrated on the
development board (e.g. Arduino Uno with Ethernet Networking shield, GSM shield, etc.),
sometimes a new system, integrating networking capabilities in one SoC (e.g. Espressif
SoCs). More advanced devices that require OS to operate preliminarily benefited from
externally connected peripheral network interfaces via standard wired ports like USB
(e.g. early versions of the Raspberry Pi, where WiFi card was delivered as USB stick),
currently, usually integrate most of the network interfaces in a single board (e.g. RPi 4,
including Ethernet, WiFi and Bluetooth). Still, in the case of the Fog class devices, those
are separate chips to the CPU, and they communicate over, e.g. PCI or USB protocol.

A microcontroller with network capabilities is the key, but not the only element forming
an IoT node device. Additional elements, including sensors and actuators, are needed to
keep in touch with the environment.

5. IoT Hardware Overview

156

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

5.1. Most Noticeable Platforms

The IoT market is an emerging one. New hardware solutions appear almost daily, while
others disappear quickly. At the moment of writing the first version of this book
(2016-2019), some hardware solutions that seemed prominent for at least a couple of
years existed. After a few years, while the 2nd edition of the publication is being prepared
(2023–2025), most of the hardware solutions described previously are still present on the
market, even strengthening their position and having modernized and improved versions
(e.g. ESP32 as the successor of ESP8266). However, some other platforms increased their
popularity, mainly because of their appearance in the VSCode programming environment
with PlatformIO, and what is even more important, the possibility of writing programs
in the Arduino model. In the following sections, a short review of these platforms is
provided.

▪ AVR: Arduino – a development board using the Atmel microcontroller, undoubtedly the
most popular development platform for enthusiasts and professionals. Arduino itself
barely offers networking capabilities yet; there are many extension boards, including
wired and wireless network interfaces.

▪ ESP: Espressif (Espressif Systems) – the great SoC solutions with wireless network
interfaces built-in; the family of Espressif chips includes ESP8266 (WiFi) and ESP32
(802.11: WiFi, Bluetooth and 802.15.4: Matter, BLE, Thread and Zigbee).

▪ nRF52: Nordic Semiconductor SoC based on ARM architecture offers 802.15.4
protocols: Bluetooth, ZigBee, Matter, and Thread.

▪ STM32: Another ARM-based family of SoCs; some have Bluetooth wireless module
built-in and 802.15.4 protocols.

▪ ARM: Raspberry Pi (and its clones) – advanced boards, including Linux operating
system with GUI interface, even able to replace desktop computers. There are also,
however, low-powered, constrained devices with ARM cores, such as Cortex-M0+
(Raspberry Pi Pico/Pico W: RP2040).

5.1. Most Noticeable Platforms

157

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

5.1.1. Arduino General Overview

No doubt, Arduino became the most widespread name in the development boards world,
particularly among enthusiasts, educators, amateurs, and hobbyists, driving de-facto the
embedded systems market for years.

Using cheap Atmel AVR microcontrollers, delivered along with development board and
peripherals of almost any kind, including sensors and actuators, where you do not need
to develop your PCB nor solder to obtain the fully functional device, all that triggered a
new era where almost anyone can afford to have a development set and start playing the
way only professionals used to do. Moreover, Arduino was not only the hardware but also
the programming idea, delivering a simple development environment that is easy to use
for beginners. Perhaps the most crucial impact of the Arduino on daily use was to spread
the idea of taking automation control from the industry and bringing it on a massive scale
to regular life, homes, cars, and toys to automate daily life.

The beginnings of the Arduino are dated to the year 2003 in Italy. Their most popular
development board was delivered to the market in the fall of 2010. While AVRs
microcontrollers are considered to be embedded systems more than IoT, and most of
the early Arduino boards didn't offer any network interface, even then, it is essential to
understand the idea of how to work with SoCs, so we start our guide here. However, many
extension boards are suitable for the standard development boards (so-called shields)
that offer wired and wireless networking for Arduino. Also, their clones, made mainly
by Chinese manufacturers, evolved into more sophisticated products, integrating, e.g.
Arduino Mega 2560 and ESP8266 SoC into one development board.

Initially, all Arduino development boards were using ATMEL's MCUs. It is no longer the
case due to the demand for integrated radio communication that ATMEL's MCUs lack.

At the moment of writing this book, the Arduino family contains 4 main branches:

▪ Nano: the tiniest yet powerful boards, newer models containing integrated radio
modules such as Bluetooth and WiFi. Many 3rd party clones are available worldwide.
A wide choice of shields provides the capability to extend the system with sensors
and actuators. Depending on the board, you can find ATMEL's ATmegas, RP2040 or
ARM Cortex-based ones.

▪ MKR: much bigger than Nano, providing broader wireless connectivity capabilities,
including LoRa, Sigfox and NB-IoT. All of those boards use ARM Cortex M0, 32-bit MCU.

▪ Mega: the biggest development boards with many GPIO pins, efficiently allocating,
e.g. dot matric displays that need to be connected with parallel interface. There are
currently 3 family members, each using a different MCU: the original ATmega2560,
ARM Cortex M3 and STM32.

▪ Classic: the most recognisable shape of the development boards still driving the look
of the embedded systems and IoT: Arduino Uno's development board shape. The
family uses ATmegas, Reneas and ARM Cortex M0+ MCUs.

There are also a dozen retired products that are still present on the market, such as the
LilyPad series, which was intended to become intelligent jewellery and smart clothing, or

5. IoT Hardware Overview

158

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

the Yun series - the first of real IoT devices made by Arduino, that were designed to run
Linux distribution.

Hardware
The Arduino boards work by reacting on signals at inputs that are received from various
sensors, and after executing a set of instructions, an output is generated to respond
to the environment. The input signal can be generated by pressing a button, receiving
the radio or light signal, hearing the sound, perceiving an image of the situation using
a camera resulting from the environmental sensor measurement, and many others. The
output actions in the environment use output elements like actuators, blinking LEDs,
audio devices, and others. The set of instructions executed to handle both sensors and
actuators is created using the Arduino programming language based on an open-
source programming framework called Wiring and the Arduino Software (IDE) based
on Processing. The microcontroller or System on Chip is the most crucial element in the
IoT and embedded devices built nowadays. It is not common to add peripheral elements
external to the microcontroller, so the choice of this element influences almost all
hardware parameters and the set of peripherals of the board. Because many versions of
Arduino boards are available, only their selection is presented in the following chapters.

Processor
The initial, still very popular version of the Arduino board - Arduino Uno, is based on the
ATmega328P microcontroller. The same chip is used in, e.g. Arduino Nano and Pro Mini.
Arduino Leonardo or Micro is based on ATmega32u4, which has a built-in USB interface.
The Arduino Mega board is created with an extended microcontroller ATmega2560, which
has many more interface pins.

Memory
There are three different types of memory on the Arduino board: flash memory, SRAM and
EEPROM. They are usually built into the main microcontroller, so their type determines
the amount of memory available. A list of memory sizes regarding the microcontroller
type is presented in table 11.

The flash memory stores the Arduino code, a non-volatile type of memory. That means
the information in the memory is not deleted when the power is turned off.

The SRAM (static random access memory) is used for storing variables' values when the
Arduino program is running. This volatile memory keeps information only until the power
is turned off or the board is reset.

The EEPROM (electrically erasable programmable read-only memory) is a non-volatile
type of memory that can be used as long-term memory storage.

Table 11: The Comparison of Basic Arduino Boards by Microcontroller Type and Memory Size
Uno Leonardo Micro Mega Nano Pro Mini

Microcontroller ATmega328p ATmega32u4 ATmega32u4 ATmega2650 ATmega328p ATmega328p

Flash (kB) 32 32 32 256 32 32

SRAM (kB) 2 2 2.5 8 2 2

EEPROM (kB) 1 1 1 4 1 1

5.1. Most Noticeable Platforms

159

Peripherals
Peripherals are all functional units which play the roles of external elements of the
CPU. Arduino boards are mainly implemented internally in the microcontroller, so the
number and type of peripherals depend on the microcontroller version. Peripherals
include Timers, Communication and networking interfaces, GPIOs, Analog comparators
and converters, and supervisory units.

Networking
The basic Arduino boards do not implement any networking connectivity. This capability
to use Ethernet, WiFi, Bluetooth, ZigBee, and other wireless protocols can be added with
an external module or shield. Example shields are Arduino Ethernet Shield, WiFly Shield,
Arduino WiFi Shield, Electric Imp Shield, XBee Shield, Cellular Shield SM5100B and GPS
Shield. In the simplest version, the WiFi module like Espressif ESP01S can be connected
to Arduino's serial port and programmed with AT commands.

Communication Interfaces
Communication interfaces for Arduino are used to send and receive information to and
from other external devices. Standard interfaces for Arduino are UART, I2C (also called
TWI - Two-Wire Interface), SPI, and USB.

Timers
Timers are implemented as the essential elements of almost every microcontroller.
These units can operate in timer mode or counter mode. In the first mode, they count
pulses generated internally in the microcontroller. This makes it possible to generate
square signals of specified frequency, signal periodic interrupts, or generate pulse width
modulated signals at PWM outputs. In counter mode, counting the number of external
pulses is possible. In selected Arduino boards, there are 8-bit and 16-bit timers, an
additional real-time clock with a separate generator, and a watchdog timer that can work
as a supervisory unit which resets the microcontroller in case of software hang-up. The
list of interfaces and timers is presented in table 12.

Table 12: The Comparison of Arduino Boards by Interfaces and Timers Available
Uno Leonardo Micro Mega Nano Pro Mini

USB 1 USB B 1 Micro 1 Micro 1 USB B 1 Mini –

UART 1 1 1 4 1 1

I2C 1 1 1 1 1 1

SPI 1 1 1 1 1 1

8-bit Timer 1 1 1 2 1 1

16-bit Timer 2 2 2 4 2 2

Watchdog Timer 1 1 1 1 1 1

Real-time clock 1 - - 1 1 1

Video subsystem
Arduino boards do not contain specialised video chips. Their memory size does not allow
them to generate, capture, or even store complex high-resolution images. The most
common approach to display images is connecting the LCD, OLED or TFT display with an
SPI port. Connecting the camera is even more complicated. None of the microcontrollers
used in basic Arduino boards have an adequate camera port to convey high-speed video

5. IoT Hardware Overview

160

signals. An answer to this challenge is the Arducam, which implements the camera
and the hardware to capture the image to the RAM. It can be connected to an Arduino
board with an SPI interface, allowing it to read and process the image data at the main
processor speed.

Hardware connectors
Digital Input/Output Pins
Digital input/output (I/O) pins are contacts on the Arduino board that can receive or
transmit a digital signal. The status of the pin can be set either to 0, which represents
LOW signal or to 1 – HIGH signal. The maximum current of the pin output is 40 mA.

Pulse Width Modulation
Pulse Width Modulation (PWM) is a function of a pin to generate a square wave signal
with a variable length of the HIGH level of the output signal. The PWM is used for digital
pins to simulate the analogue output.

Analog Pins
Analog pins convert the analogue input value to a 10-bit number using Analog Digital
Converter (ADC). This function maps the input voltage between 0 and the reference
voltage to numbers between 0 and 1023. By default, the reference voltage is set to
a microcontroller operating voltage. Usually, it is 5 V or 3.3 V. Also, other internal or
external reference sources, for example, AREF pin, can be used.

A list of pins and hardware interfaces for popular Arduino boards is present in table 13.
Table 13: The Comparison of Basic Arduino Boards by the Number of Pins in Hardware Interfaces

Uno Leonardo Micro Mega Nano Pro Mini

Digital I/O 14 20 20 54 22 14

PWM 6 7 7 12 6 6

Analog pins 6 12 12 16 8 6

Power and Other Pins

▪ Power pins on the Arduino board connect the power source to the microcontroller and/
or voltage regulators. They can also be a power source for external components and
devices.

▪ The VIN pin connects the external power source to the internal regulator to provide
the regulated 5 V output. The input voltage of the board must be within the specific
range, mainly between 7 V and 12 V.

▪ The 5V pin is used to supply a microcontroller with the regulated 5 V from the external
source or is used as a power source for the external components in the case when the
board is already powered using the USB interface or the VIN pin.

▪ The 3V3 pin provides the regulated 3.3 V output for the board components and
external devices. The GND (ground pin) is where the negative terminal of the power
supply is applied.

▪ The reset pin and button reset the Arduino board and the program. Resetting using
the reset pin is done by connecting it to the GND.

5.1. Most Noticeable Platforms

161

5.1.2. Espressif Family

Arduino and a vast amount of peripheral boards lack integration of the networking
capabilities in one SoC. Espressif ESP series was the natural answer for this disadvantage
as their ESP 8266 with integrated WiFi, introduced in 2014, is widely recognised as a
turning point for the IoT market, delivering de-facto fully functional IoT chip, providing
high performance and low power to the end users and developers. ESP32, launched
in 2016, brought even more disruptive effects to the IoT ecosystems, introducing an
additional Bluetooth interface to the above. The most popular series of these
microcontrollers are ESP8266EX, ESP32, ESP32S, C and H families.

The significant difference is that ESP SoCs (both 8266 and 32)
use 3.3 V logic, while most (but not all!) Arduinos use 5 V
logic. This can be easily handled using one or bi-directional
voltage converters/adapters. Additionally, many ESP boards
and development kits offer double power source, including 5
V, even if the device itself still operates on 3.3 V

ESP 8xxx Family

At the moment, the ESP 8xxx family includes the following chips:

▪ ESP8266EX (figure 68),
▪ ESP8285 (figure 69).

Figure 68: ESP8266EX chip

5. IoT Hardware Overview

162

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 69: ESP8285 chip

The ESP8285 module continues the ESP8266 line with 1 MB of built-in flash, higher
integration, and reduced dimensions.

ESP 8266

ESP 8266 General Information
The ESP8266 is a low-cost system-on-chip (SoC) microcontroller with WiFi and full TCP/IP
stack capability [63]. The main advantages of that family are:

▪ Low power consumption,
▪ Availability of WiFi and Bluetooth connections,
▪ Wide availability of low-cost modules from various suppliers,
▪ Wide availability in a variety of form factors, including SoC.

The low price and the fact that there were very few external components on the module,
which suggested that it could eventually be very inexpensive in volume, attracted many
users to explore it.

Esp8266 Architecture Overview
The main standard features of the ESP8266EX are:
Processor

▪ Main processor: L106 32-bit RISC microprocessor core based on the Tensilica Xtensa
Diamond Standard 106Micro running at 80 MHz. Both the CPU and flash clock speeds
can be doubled by overclocking on some devices. CPU can be run at 160 MHz, and
flash can be sped up from 40 MHz to 80 MHz. Success varies from chip to chip.

Memory

▪ External QSPI flash: up to 16 MB is supported (512 kB to 4 MB typically included),
▪ 32 kB instruction RAM,
▪ 32 kB instruction cache RAM,
▪ 80 kB user data RAM,
▪ 16 kB ETS system data RAM.

Interfaces

▪ IEEE 802.11 b/g/n WiFi ,

5.1. Most Noticeable Platforms

163

▪ Integrated TR switch, balun, LNA, power amplifier and matching network WEP or WPA/
WPA2 authentication, or open networks,

▪ 17 GPIO pins,
▪ SPI,
▪ I²C (software implementation),
▪ I²S interfaces with DMA (sharing pins with GPIO),
▪ UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2,
▪ 10-bit ADC (successive approximation ADC).

Figure 70 shows functional block diagram of ESP8266 chip [64].

Figure 70: ESP8266&ESP8285 functional block diagram

ESP8266 Modules
Many still popular ESP8266-based modules are on the market [65]. These modules
combine the ESP8266EX microcontroller and additional components mounted on the PCB.

The most popular are these produced by AI-Thinker and remain the most widely available
[66]:

▪ ESP-01 (512 kB Flash),
▪ ESP-01S (1 MB Flash),
▪ ESP-12 (FCC and CE approved),
▪ ESP-12E,
▪ ESP-12F (4 MB Flash, FCC and CE approved).

Popular modules from other manufacturers:

▪ Sparkfun ESP8266 Thing,
▪ Wemos D1 mini, D1 mini Pro [67].

5. IoT Hardware Overview

164

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp8266_block.jpg?id=book%3Aiot-open2nded

The Espressif company also produces ready-made modules using the aforementioned
chip. This is the series of ESP8266-based modules made by Espressif (table 14).

Table 14: Espressif ESP8266 modules
Name Active

pins LEDs Antenna Shielded Dimensions
(mm) Notes

ESP-
WROOM-02[68] 18 No PCB

trace Yes 18 × 20 FCC ID 2AC7Z-ESPWROOM02

ESP-
WROOM-02D[69] 18 No PCB

trace Yes 18 × 20 FCC ID 2AC7Z-ESPWROOM02D. Revision of ESP-WROOM-02 is
compatible with both 150-mil and 208-mil flash memory chips

ESP-
WROOM-02U[70] 18 No U.FL

socket Yes 18 × 20 Differs from ESP-WROOM-02D in that includes an U.FL
compatible antenna socket connector

ESP-WROOM-
S2[71] 20 No PCB

trace Yes 16 × 23 FCC ID 2AC7Z-ESPWROOMS2

The most widely used chipset ESP-01 is presented in (figure 71) and its pinout on (figure
72).

Figure 71: ESP-01

Figure 72: ESP-01 pinout

Module ESP12F with pinout is presented on (figure 73) and its pinout on (figure 74).

Figure 73: ESP-12F

5.1. Most Noticeable Platforms

165

Figure 74: ESP-12F pinout

Among the other modules, it is worth being interested in WEMOS modules [72] (figure
75, figure 76). The WEMOS company offers dedicated sensor modules and inputs/outputs
compatible with the processor modules. They are called WEMOS shields (figure 77).

Figure 75: Wemos D1 mini with pinout

Figure 76: Wemos D1 Pro

5. IoT Hardware Overview

166

Figure 77: Wemos I/O shields

ESP 8285

ESP8285 Architecture Overview
Main differences between ESP8285 and ESP8266 are:
Processor

▪ L106 32-bit RISC microprocessor core running at 160MHz

Memory

▪ Internal 1MB or 2MB program memory,

Power consumption

▪ ESP8285 has a lower power consumption than the ESP8266. The ESP8285 consumes
2.7 mA in deep-sleep mode, vs 10 mA ESP8266,

▪ Wake up within 2 ms.

Security

▪ Supports secure boot and flash encryption.

ESP32 General Information

ESP32 is a low-cost, low-power system on a chip (SoC) series microcontroller with
WiFi & dual-mode Bluetooth capabilities [73]. ESP32 SoC is highly integrated with built-
in antenna switches, power amplifiers, low-noise receive amplifiers, filters, and power
management modules. Inside all families of ESP32, there is a single-core or dual-core
Tensilica Xtensa LX6 microprocessor with a clock rate of up to 240 MHz. ESP32 is designed
for mobile, wearable electronics, and Internet-of-Things (IoT) applications. It features
all the state-of-the-art characteristics of low-power chips, including fine-grained clock
gating, multiple power modes, and dynamic power scaling. For now, the ESP32 family
includes the following chips in mass production:

5.1. Most Noticeable Platforms

167

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ ESP32-D0WD-V3 (figure 78) ,
▪ ESP32-U4WDH (figure 79),
▪ ESP32-PICO-D4 - SiP (system in package) (figure 80) – additionally contains crystal

oscillator, 4MB flash memory, filter capacitors and RF matching links,
▪ ESP32-PICO-V3 - SiP (system in package) – new core (ECO V3)
▪ ESP32-PICO-V3-02 - SiP (figure 81 – package size is slightly thicker - 7 × 7 × 1.11

(mm), the chip integrates 8 MB flash and 2 MB PSRAM with different pin layout,

and older chips, not for new designs:

▪ ESP32-D0WDQ6 (figure 82),
▪ ESP32-D0WDQ6-V3,
▪ ESP32-D0WD (figure 83),
▪ ESP32-S0WD (figure 85).

Figure 78: ESP32-D0WD-V3

Figure 79: ESP32-U4WDH

Figure 80: ESP32-PICO-D4

5. IoT Hardware Overview

168

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image006.jpg?id=book%3Aiot-open2nded

Figure 81: ESP32-PICO-V3-02

Figure 82: ESP32-D0WDQ6

Figure 83: ESP32-D0WD

Figure 84: ESP32-D2WD

Figure 85: ESP32-S0WD

ESP32 Architecture Overview
The functional block diagram of the ESP32 chip is shown in figure 86. Main common

5.1. Most Noticeable Platforms

169

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image002.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image003.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image004.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image005.jpg?id=book%3Aiot-open2nded

features of the ESP32 are: [74] [75].

Processors

▪ Main processor: Tensilica Xtensa 32-bit LX6 microprocessor.
▪ Cores: 2 or 1 (depending on variation). (All chips in the ESP32 series are dual-core

except for ESP32-S0WD, which is single-core.)
▪ Internal 8 Mhz oscillator with calibration.
▪ External 2 MHz to 60 MHz crystal oscillator (40 MHz only for WiFi/BT functionality).
▪ External 32 kHz crystal oscillator for RTC with calibration.
▪ Clock frequency: up to 240 MHz.
▪ Performance: up to 600 DMIPS.

▪ Ultra low power co-processor: allows you to do ADC conversions, I2C connecting,
computation, and level thresholds while in a deep sleep.

Wireless connectivity

▪ WiFi: 802.11 b/g/n/e/i (802.11n @ 2.4 GHz up to 150 Mbit/s) with simultaneous
Infrastructure BSS Station mode/SoftApp mode/Promiscuous mode.

▪ Bluetooth: v4.2 BR/EDR and Bluetooth Low Energy (BLE) with multi-connections Bt
and BLE and simultaneous advertising and scanning capability.

Memory: Internal memory

▪ ROM: 448 kB (booting and core functions).
▪ SRAM: 520 kB (for data and instruction).
▪ RTC fast SRAM: 8 kB (for data storage and main CPU during RTC Boot from the deep-

sleep mode).
▪ RTC slow SRAM: 8 kB (for co-processor accessing during deep-sleep mode).
▪ eFuse: 1 Kibit (of which 256 bits are used for the system (MAC address and chip

configuration), and the remaining 768 bits are reserved for customer applications,
including Flash-Encryption and Chip-ID).

▪ Embedded flash (flash connected internally via IO16, IO17, SD_CMD, SD_CLK,
SD_DATA_0 and SD_DATA_1 on ESP32-D2WD and ESP32-PICO-D4):
▪ 0 MB (ESP32-D0WDQ6, ESP32-D0WD, and ESP32-S0WD chips),
▪ 2 MB (ESP32-D2WD chip).

External Flash & SRAM

▪ ESP32 supports up to four 16 MB external QSPI flashes and SRAMs with hardware
encryption based on AES to protect developers' programs and data. ESP32 can access
the external QSPI flash and SRAM through high-speed caches.

▪ Up to 16 MB of external flash are memory-mapped onto the CPU code space,
supporting 8-bit, 16-bit and 32-bit access. Code execution is supported.

▪ Up to 8 MB of external flash/SRAM memory is mapped onto the CPU data space,

5. IoT Hardware Overview

170

supporting 8-bit, 16-bit and 32-bit access. Data-read is supported on the flash and
SRAM. Data write is supported on the SRAM.

ESP32 chips with embedded flash do not support the address mapping between external
flash and peripherals.

Peripheral Input/Output

▪ Rich peripheral interface with DMA includes capacitive touch (10× touch sensors).
▪ 12-bit ADCs (analog-to-digital converter) up to 18 channels.
▪ 2 × 8 bit DACs (digital-to-analog converter).
▪ 2 × I²C (Inter-Integrated Circuit.
▪ 3x UART (universal asynchronous receiver/transmitter).
▪ CAN 2.0 (Controller Area Network).
▪ 4 × SPI (Serial Peripheral Interface).
▪ 2 × I²S (Integrated Inter-IC Sound).
▪ RMII (Reduced Media-Independent Interface).
▪ Motor PWM (pulse width modulation).
▪ LED PWM up to 16 channels.
▪ Hall sensor.
▪ Internal temperature sensor.

Security

▪ Secure boot.
▪ Flash encryption.
▪ IEEE 802.11 standard security features are all supported, including WFA, WPA/WPA2

and WAPI.
▪ 1024-bit OTP, up to 768-bit for customers.
▪ Cryptographic hardware acceleration:

▪ AES,
▪ SHA-2,
▪ RSA,
▪ elliptic curve cryptography (ECC),
▪ random number generator (RNG).

5.1. Most Noticeable Platforms

171

Figure 86: ESP32 Functional block diagram

ESP32 Modules
The company also produces ready-made modules using the processors above [76]. These
modules combine ESP32 microcontroller and additional components mounted on PCB
with EM shield (table 15):

Table 15: Espressif ESP32 modules
Module Chip Number of cores Flash, MB PSRAM, MB Ant. Dimensions, mm

ESP32-WROOM-32(figure 87) ESP32-D0WDQ6 2 4 – PCB 18 × 25.5 × 3.1

ESP32-WROOM-32D ESP32-D0WD 2 4, 8, or 16 – PCB 18 × 25.5 × 3.1

ESP32-WROOM-32U(figure 88) ESP32-D0WD 2 4, 8, or 16 – U.FL 18 × 19.2 × 3.1

ESP32-SOLO-1 ESP32-S0WD 1 4 – PCB 18 × 25.5 × 3.1

ESP32-WROVER (PCB)(figure 89) ESP32-D0WDQ6 2 4 8 PCB 18 × 31.4 × 3.3

ESP32-WROVER (IPEX) ESP32-D0WDQ6 2 4 8 U.FL 18 × 31.4 × 3.3

ESP32-WROVER-B ESP32-D0WD 2 4, 8, or 16 8 PCB 18 × 31.4 × 3.3

ESP32-WROVER-IB(figure 90) ESP32-D0WD 2 4, 8, or 16 8 U.FL 18 × 31.4 × 3.3

- U.FL - U.FL / IPEX antenna connector

5. IoT Hardware Overview

172

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-block-diagram.jpg?id=book%3Aiot-open2nded

Figure 87: ESP32-WROOM-32

Figure 88: ESP32-WROOM-U

Figure 89: ESP32-WROVER

Figure 90: ESP32-WROVER-I

5.1. Most Noticeable Platforms

173

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image008.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image009.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image010.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image011.jpg?id=book%3Aiot-open2nded

ESP32 Pico Architecture Overview
ESP32-PICO-D4
The ESP32-PICO-D4[77] is a System-in-Package (SiP) module that is based on ESP32.
ESP32-PICO-D4 integrates all peripheral components in one package, including a crystal
oscillator, flash, filter capacitors and RF matching links. The module is as small as 7.0 mm
× 7.0 mm × 0.94 mm, thus requiring minimal PCB area. The main characteristics that
distinguish it from the ESP32 family are:

▪ Integrated crystal oscillator, filter capacitors and RF matching circuit,
▪ Internal built-in memory 4 MB SPI flash,
▪ chip size 7.0 mm × 7.0 mm × 0.94 mm.

ESP32-PICO-V3
The ESP32-PICO-V3[78] is a System-in-Package (SiP) module that is based on ESP32 but
with a new ECO V3 wafer. The module is as small as 7.0 mm × 7.0 mm × 1.11 mm.
Distinguishing features from the ESP32-PICO-D4 chips are:

▪ New silicone wafer ECO V3,
▪ 16 kB SRAM in RTC,
▪ chip size 7.0 mm × 7.0 mm × 1,11 mm.

ESP32-PICO-V3-02
The ESP32-PICO-V3-02[79] is based on ESP32-PICO-V3 with additional SPi flash and SPI
PSRAM. Distinguishing features from the ESP32-PICO-V3 chips are:

▪ Internal built-in SPI flash memory 8 MB,
▪ Internal built-in SPI PSRAM memory 2 MB,
▪ additional GPIO pin - GPIO20,
▪ For chip security purposes, flash pins DI, DO, /HOLD, /WP and PSRAM pins SI/SIO0, SO/

SIO1, SIO2, and SIO3 are not led out.

ESP32-PICO Modules
The company also produces ready-made modules using the ESP32-PICO SOCs [80] [81].
These modules combine ESP32 microcontroller and additional components mounted on
PCB with EM shield (table 16).

Table 16: Espressif ESP32-PICO modules
Module Chip Number of

cores
Flash,

MB
PSRAM,

MB Ant. Dimensions,
mm

ESP32-PICO-MINI-02 (figure 91) ESP32-PICO-
V3-02 2 8 2 PCB 13.2 × 16.6 ×

2.4

ESP32-PICO-MINI-02U (figure 92) ESP32-PICO-
V3-02 2 8 2 IPEX 13.2 × 11.2 ×

2.4

ESP32-PICO-V3-ZERO (figure 93) for Alexa
Connect Kit (ACK)

ESP32-PICO-
V3 2 4 – PCB&IPEX 16 × 23 × 2.3

5. IoT Hardware Overview

174

Figure 91: ESP32-PICO-mini-02

Figure 92: ESP32-PICO-mini-02U

Figure 93: ESP32-PICOV3-ZERO

ESP32 Development Kits
To accelerate the design of circuits, developers can use specially prepared sets with
ESP32, which are ready to use. The original Espressif best-known small development
boards are:

▪ ESP32-DevkitC (figure 94),
▪ ESP32-PICO-KIT-V4 (figure 95),
▪ ESP32-PICO-KIT-1 with ESP32-PICO-V3 (figure 96),
▪ ESP32-PICO-DevKitM-2 with ESP32-PICO-Mini-02 (figure 97).

Figure 94: ESP-32-DevkitC[82]

5.1. Most Noticeable Platforms

175

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image012.jpg?id=book%3Aiot-open2nded

Figure 95: ESP-32-PICO-KIT-V4[83]

Figure 96: ESP-32-PICO-KIT-1[84]

Figure 97: ESP-32-PICO-DEVKITM-2[85]

General Purpose Input-Output (GPIO) Connector
Each ESP32 is equipped with a standard 38/40-pis male connector containing universal
GPIO ports, VCC 3.3/5 V, GND, CLK, I2C/SPI bus pins, which developers can use to connect
their external sensors, switches and other controlled devices to the ESP32 board and then
program their behaviour within the code loaded to the board.

▪ ESP32-DevkitC v2 pins (figure 98).

Figure 98: ESP32-DevkitC pins

▪ ESP32-PICO D4 pins (figure 99).

5. IoT Hardware Overview

176

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image013.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32_devkitc_pinout.jpg?id=book%3Aiot-open2nded

Figure 99: ESP32-Pico Kit pins [86]

▪ ESP32 Wemos Pro pins (figure 100).

Figure 100: ESP32 Wemos Pro pins

In addition to modules for developers, small microcomputers with ESP processors are also
produced. They are very convenient to use. They often include one or two buttons, an
RGB LED or LCD, and everything enclosed in a case and ready for use in small projects.
One of them is the ESP-PICO-D4 based M5 Atom-lite (figure 101):

5.1. Most Noticeable Platforms

177

Figure 101: M5ATOM-lite top&bottom view

An additional advantage of such a module for use in mini projects is the available housing
with a prototype PCB shown in figure 102

Figure 102: Housing with proto board for Atom -lite[87].

ESP32-Sx Family

5. IoT Hardware Overview

178

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

ESP32-S2

ESP32-S2 General Information
The Espressif ESP32-S2 family is a series of low-power, single-core microcontrollers built
on the Espressif IoT platform. They feature a highly integrated SoC (System on Chip)
architecture, combining a CPU, WiFi connectivity, and various peripherals in a compact
package. The ESP32-S2 chips are designed for IoT applications, smart home devices,
wearables and more, offering enhanced security features, low power consumption, and
support for various communication protocols. These microcontrollers are known for their
cost-effectiveness and capabilities of connected devices. ESP32-S2 SoC is based on an
Xtensa single-core 32-bit LX7 microcontroller with an additional ultra-low power (ULP)
coprocessor with a Wi-Fi 2.4GHz radio and numerals peripherals. For now, the ESP32-S2
series includes the following chips in mass production:

▪ ESP32-S2 (figure 103) ,
▪ ESP32-S2F (figure 104) .

Figure 103: ESP32-S2

Figure 104: ESP32-S2F

ESP32-S2 Architecture Overview
Figure 105 shows functional block diagram of ESP32-S2 chip[88]. The main common
features of the ESP32-S2 are:

Processors

▪ Main processor: • Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz
▪ Cores: 1

▪ Ultra low power coprocessor:
▪ Cores: 1

Wireless connectivity

5.1. Most Noticeable Platforms

179

▪ WiFi: 802.11 b/g/n/(802.11n @ 2.4 GHz up to 150 Mbit/s) with simultaneous
Infrastructure BSS Station mode/SoftApp mode/Promiscuous mode.

Memory: Internal memory

▪ ROM: 128 kB (for booting and core functions),
▪ SRAM: 320 kB (for data and instruction),
▪ RTC SRAM: 16 kB (for data storage and main CPU during RTC Boot from the deep-

sleep mode),
▪ Embedded flash:

▪ 0 MB (ESP32-S2, ESP32-S2R2 chips),
▪ 2 MB (ESP32-S2FH2 chip),
▪ 4 MB (ESP32S2FH4, ESP32FN4R2 chips).

▪ Embedded PSRAM:
▪ 0 MB (ESP32-S2, ESP32-S2FH2, ESP32S2FH4 chips),
▪ 2 MB (ESP32FN4R2, ESP32-S2R2 chips).

Peripheral Input/Output

▪ 43 programmable GPIOs,
▪ 2 × I²C (Inter-Integrated Circuit,
▪ 2 x UART (universal asynchronous receiver/transmitter),
▪ 4 × SPI (Serial Peripheral Interface),
▪ 1 × I²S (Integrated Inter-IC Sound),
▪ 1 x RMT (TX/RX),
▪ Motor PWM (pulse width modulation),
▪ LED PWM up to 8 channels,
▪ DMA controller,
▪ 1 x TWAI controller compatible with CAN Spec. 2.0,
▪ 4 x pulse counters,
▪ 1 x full-speed USB OTG,
▪ 1 x DVP 8/16 camera interface (I2S),
▪ 1 x LCD serial interface (SPI),
▪ 1 x LCD parallel interface.

Analog interfaces

▪ 2 x 13-bit ADCs up to 20 channels,
▪ 2 x 8-bit DACs,
▪ 14 x touch sensing GPIO,
▪ 1 x temperature sensor.

5. IoT Hardware Overview

180

Security

▪ Secure boot,
▪ Flash encryption,
▪ IEEE 802.11 standard security features are all supported, including WFA, WPA/WPA2

and WAPI,
▪ 4096-bit OTP, up to 1792-bit for customers,
▪ Cryptographic hardware acceleration:

▪ AES-128/192/256,
▪ HMAC,
▪ RSA,
▪ random number generator (RNG).

Figure 105: ESP32-S2 Functional block diagram

ESP32-S2 Modules
The company also produces ready-made modules for easier implementation in user
systems. These modules combines ESP32-S2 microcontroller and additional components
mounted on PCB with EM shield [89](table 17):

Table 17: Espressif ESP32-S2 modules
Module Chip

Embedded
Dimensions
(mm) Pins Flash

(MB)
PSRAM
(MB) Antenna Development

Board

ESP32-S2-MINI-2 (figure
106)

ESP32-S2FH4
ESP32-S2FN4R2 15.4×20×2.4 65 4 0,2 PCB ESP32-S2-DevKitM-1

ESP32-S2-MINI-2U ESP32-S2FH4
ESP32-S2FN4R2 15.4×15.4×2.4 65 4 0,2 IPEX ESP32-S2-DevKitM-1

5.1. Most Noticeable Platforms

181

Module Chip
Embedded

Dimensions
(mm) Pins Flash

(MB)
PSRAM
(MB) Antenna Development

Board

ESP32-S2-SOLO-2 (figure
107)

ESP32-S2
ESP32-S2R2 18×25.5×3.1 41 4 0,2 PCB ESP32-S2-DevKitC-1

ESP32-S2-SOLO-2U ESP32-S2
ESP32-S2R2 18×19.2×3.2 41 4 0,2 IPEX ESP32-S2-DevKitC-1

ESP32-S2-MINI-1 ESP32-S2FH4
ESP32-S2FN4R2 15.4×20×2.4 65 4 0,2 PCB ESP32-S2-DevKitM-1

ESP32-S2-MINI-1U (figure
108)

ESP32-S2FH4
ESP32-S2FN4R2 15.4×15.4×2.4 65 4 0,2 IPEX ESP32-S2-DevKitM-1

ESP32-S2-SOLO ESP32-S2
ESP32-S2R2 18×25.5×3.1 40 4,8,16 0,2 PCB ESP32-S2-DevKitC-1

ESP32-S2-SOLO-U ESP32-S2
ESP32-S2R2 18×19.2×3.2 40 4,8,16 0,2 IPEX ESP32-S2-DevKitC-1

Figure 106: ESP32-S2-mini2

Figure 107: ESP32-S2-solo2

Figure 108: ESP32-S2-mini-1U

ESP32-S2 Development Kits
For convenience, used by users of all skill levels, Espressif produces entry-level
development boards using the ESP32-S2 SOCs. Those boards integrate complete Wi-Fi
functions. Most ESP32-S2 I/O pins are broken out to the pin headers on both sides for easy
interfacing. Users can connect peripherals with jumper wires or mount the development
kit on a breadboard. Many different companies offer ready-made boards with processors.
The original Espressif best-known small development boards are:

▪ ESP32-S2-DevkitM [90](figure 109) ,

5. IoT Hardware Overview

182

▪ ESP32-S2-DevkitC [91](figure 110) ,

Figure 109: ESP32-S2-DevkitM

Figure 110: ESP32-S2-DevkitC

ESP32-S3

ESP32-S3 General Information
The ESP32-S3[92][93] is an advanced version within Espressif S family, offering improved
performance and expanded capabilities compared to its predecessors. ESP32-S3 is an
MCU with a dual-core 32-bit Xtensa LX7 microprocessor, dual ULP coprocessors with
Wifi 2.4 GHz and Bluetooth LE radio, and numerous useful peripherals. ESP32-S3 offers
enhanced processing power, lower power consumption, and improved IoT and wireless
connectivity application features. ESP32-S3 is designed for mobile systems, Industrial
and Home Automation, Health Care devices, Touch and Proximity Sensing, wearable
electronics, and Internet-of-Things (IoT) applications. In addition, ESP32-S3 includes
support for vector instructions in the MCU, which provides acceleration for neural network
computing and signal processing workloads. The ESP32-S3 is the first low-cost
microcontroller with a built-in peripheral that can drive TTL displays, and it can come with

5.1. Most Noticeable Platforms

183

enough PSRAM to buffer those large images. For now, the ESP32-S3 family includes the
following chips in mass production:

▪ ESP32-S3 (figure 111) ,
▪ ESP32-S3-Pico-1 (figure 112).

Figure 111: ESP32-S3

Figure 112: ESP32-S3-PICO-1

ESP32-S3 Architecture Overview
Figure 113 shows a functional block diagram of the ESP32-S3 chip. ESP32-S3 Main
common features of the ESP32-S3 are:

Processors

▪ Main processor: • Xtensa® dual-core 32-bit LX7 microprocessor, up to 240 MHz:
▪ Cores: 2

▪ Ultra low power coprocessor:
▪ Cores: 2
▪ ULP-RISC-V coprocessor - based on RISC-V instruction set architecture:

▪ Support for RV32IMC instruction set,
▪ Thirty-two 32-bit general-purpose registers,
▪ 32-bit multiplier and divider,
▪ Support for interrupts,
▪ Booted by the CPU, its dedicated timer, or RTC GPIO.

▪ ULP-FSM coprocessor - based on finite state machine:
▪ Support for common instructions, including arithmetic, jump, and program

control instructions,
▪ Support for on-board sensor measurement instructions,
▪ Booted by the CPU, its dedicated timer, or RTC GPIO.

5. IoT Hardware Overview

184

Wireless connectivity

▪ WiFi: 802.11 b/g/n/mc (802.11n @ 2.4 GHz up to 150 Mbit/s) with simultaneous
Infrastructure BSS Station mode/SoftApp mode/Promiscuous mode.

▪ Bluetooth:
▪ Low Energy Bluetooth 5, Bluetooth mesh,
▪ Speed 125kbps, 500 kbps, 1 Mbps, 2 Mbps,
▪ Internal sharing antenna with WiFi.

Memory: Internal memory:

▪ ROM: 384 kB (booting and core functions),
▪ SRAM: 512 kB (for data and instruction),
▪ RTC SRAM: 16 kB (for data storage and main CPU during RTC Boot from the deep-

sleep mode),
▪ Embedded flash:

▪ 0 MB (ESP32-S3, ESP32-S3R2, ESP32-S3R8, ESP32-S3R8V chips),
▪ 4 MB (ESP32-S3FH4R2 chip),
▪ 8 MB (ESP32-S3FN8 chip).

▪ Embedded PSRAM:
▪ 0 MB (ESP32-S3, ESP32-S3FN8 chips),
▪ 2 MB (ESP32-S3R2, ESP32-S3FH4R2 chips),
▪ 8 MB (ESP32-S3R8, ESP32-S3R8V chips).

Peripheral Input/Output:

▪ 45 programmable GPIOs,
▪ 2 × I²C (Inter-Integrated Circuit,
▪ 3 x UART (universal asynchronous receiver/transmitter),
▪ 4 × SPI (Serial Peripheral Interface),
▪ 2 × I²S (Integrated Inter-IC Sound),
▪ 1 x RMT (TX/RX),
▪ Motor PWM (pulse width modulation),
▪ LED PWM up to 8 channels,
▪ DMA controller with 5 transmit and 5 receive channels,
▪ 1 x TWAI controller compatible with CAN Spec. 2.0,
▪ 4 x pulse counters,
▪ 1 x full-speed USB OTG,
▪ 1 × USB Serial/JTAG controller,
▪ 1 x DVP 8/16 camera interface (I2S),
▪ 1 x LCD parallel interface,

5.1. Most Noticeable Platforms

185

▪ 1 × SD/MMC host controller.

Analog interfaces:

▪ 2 x 12-bit ADCs up to 20 channels,
▪ 14 x touch sensing GPIO,
▪ 1 x temperature sensor.

Low power management:

▪ Power Management Unit with five power modes,
▪ Ultra-low-power (ULP) coprocessors.

Security:

▪ Secure boot,
▪ Flash encryption,
▪ IEEE 802.11 standard security features are all supported, including WFA, WPA/WPA2

and WAPI,
▪ 4096-bit OTP, up to 1792-bit for customers,
▪ Cryptographic hardware acceleration:

▪ AES-128/192/256,
▪ Hash (FIPS PUB 180-4),
▪ HMAC,
▪ RSA,
▪ Digital signature,
▪ random number generator (RNG).

5. IoT Hardware Overview

186

Figure 113: ESP32-S3 Functional block diagram

ESP32-S3-PICO-1 has all the functions of ESP32-S3 but integrates all peripheral
components, including a crystal oscillator, decoupling capacitors, SPI flash/PSRAM, and
RF matching links, within a single package. Figure 114 shows a functional block diagram
of the ESP32-S3-PICO-1 chip.

5.1. Most Noticeable Platforms

187

Figure 114: ESP32-S3-PICO-1 Functional block diagram

ESP32-S3 Modules
The company also produces ready-made modules[94][95][96]for easier implementation in
user systems. These modules combine ESP32-S2 microcontroller, antenna and additional
components mounted on PCB with EM shield [97] (table 18):

Table 18: Espressif ESP32-S3 modules
Module Chip Embedded Dimensions

(mm) Pins Flash
(MB)

PSRAM
(MB) Antenna Development

Board

ESP32-S3-WROOM-1 (figure
115)

ESP32-S3
ESP32-S3R2
\\ESP32-S3R8

18×25.5×3.1 41 4,8,16 0,2,8 PCB

ESP32-S3-DevKitC-1
ESP32-S3-DevKitC-1
ESP32-S3-BOX-3
ESP32-S3-BOX
ESP32-S3-EYE
ESP32-S3-Korvo-1
ESP32-S3-Korvo-2
ESP32-S3-LCD-Ev-
Board

ESP32-S3-WROOM-1U
ESP32-S3
ESP32-S3R2
ESP32-S3R8

18×19.2×3.2 41 4,8,16 0,2,8 IPEX ESP32-S3-DevKitC-1

ESP32-S3-WROOM-2 (figure
116) ESP32-S3R8V 18×25.5×3.1 41 16,32 8 PCB ESP32-S3-DevKitC-1

ESP32-S3-MINI-1 (figure ESP32-S3FN8 15.4×15.4×2.4 65 8 N/A PCB ESP32-S3-DevKitM-1

5. IoT Hardware Overview

188

Module Chip Embedded Dimensions
(mm) Pins Flash

(MB)
PSRAM
(MB) Antenna Development

Board

117) ESP32-S3FH4R2

ESP32-S3-MINI-1U ESP32-S3FN8
ESP32-S3FH4R2 15.4×15.4×2.4 65 8 N/A IPEX ESP32-SM-

DevKitM-1

Figure 115: ESP32-S3-Wroom-1/1U

Figure 116: ESP32-S3-Wroom-2

5.1. Most Noticeable Platforms

189

Figure 117: ESP32-S3-Wroom-1/1U

ESP32-S3 Development Kits
To facilitate the use of ESP32-S3, Espressif and other companies produce different
development kits to suit different needs and present different processor functions. The
original Espressif best-known small development boards are:

▪ ESP32-S3-DevkitM,
▪ ESP32-S3-DevkitC,
▪ ESP32-S3-BOX-3,
▪ ESP32-S3-BOX,
▪ ESP32-S3-EYE,
▪ ESP32-S3-Korvo-1,
▪ ESP32-S3-Korvo-2,
▪ ESP32-S3-LCD-Ev-Board.

For this book, we present only a few of the most popular, universal for various
applications development boards:

▪ ESP32-S3-DevkitM(figure 118) ,
▪ ESP32-S3-DevkitC(figure 119) ,
▪ Waveshare ESP32-PICO-1[98] (figure 120),
▪ M5Stamp-S3[99] (figure 121).

5. IoT Hardware Overview

190

Figure 118: ESP32-S3-DevkitM

Figure 119: ESP32-S3-DevkitC

5.1. Most Noticeable Platforms

191

Figure 120: Waveshare ESP32-S3-PICO-1

5. IoT Hardware Overview

192

Figure 121: M5Stamp-S3 with pin headers

ESP32-S2&S3 chip comparison
Table 19 provides a brief comparison of the most essential features of the ESP32-S2 &
ESP32-S3 systems[100]

Table 19: ESP32-S2 & ESP32-S3 family brief comparison
Feature ESP32 Series ESP32-S2 Series ESP32-S3 Series

Launch year 2016 2020 2020

Core Xtensa® dual-/single core
32-bit LX6 Xtensa® single-core 32-bit LX7 Xtensa® dual-core 32-bit LX7

Wi-Fi protocols 802.11 b/g/n, 2.4 GHz 802.11 b/g/n, 2.4 GHz 802.11 b/g/n, 2.4 GHz

Bluetooth® Bluetooth v4.2 BR/EDR and
Bluetooth Low Energy ✖ Bluetooth 5.0

Typical
frequency

240 MHz (160 MHz for
ESP32-S0WD) 240 MHz 240 MHz

SRAM 520 KB 320 KB 512 KB

ROM 448 KB for booting and core
functions 128 KB for booting and core functions 384 KB for booting and core functions

Embedded
flash

2 MB, 4 MB, or none,
depending on variants

2 MB, 4 MB, or none, depending on
variants 8 MB or none, depending on variants

External flash Up to 16 MB device, address
11 MB + 248 KB each time

Up to 1 GB device, address 11.5 MB
each time Up to 1 GB device, address 32 MB each time

External RAM Up to 8 MB device, address 4
MB each time

Up to 1 GB device, address 11.5 MB
each time Up to 1 GB device, address 32 MB each time

Cache ✔ Two-way set associative
✔ Four-way set associative,
independent instruction cache and
data cache

✔ Four-way or eight-way set associative for
instruction cache; four-way set associative
for data cache, 32-bit data/instruction bus
width

Peripherals

ADC Two 12-bit, 18 channels Two 12-bit, 20 channels Two 12-bit SAR ADCs, 20 channels

DAC Two 8-bit channels Two 8-bit channels ✖

Timers
Four 64-bit general-purpose
timers, and three watchdog
timers

Four 64-bit general-purpose timers,
and three watchdog timers

Four 54-bit general-purpose timers, and
three watchdog timers

Temperature
sensor ✖ 1 1

Touch sensor 10 14 14

5.1. Most Noticeable Platforms

193

Feature ESP32 Series ESP32-S2 Series ESP32-S3 Series

Hall sensor 1 ✖ ✖

GPIO 34 43 45

SPI 4 4 4

LCD interface 1 1 1

UART 3 2 1 3

I2C 2 2 2

I2S
2, can be configured to
operate with 8/16/32/40/48-bit
resolution as an input or
output channel.

1, can be configured to operate with
8/16/24/32/48/64-bit resolution as an
input or output channel.

2, can be configured to operate with 8/16/
24/32-bit resolution as an input or output
channel.

Camera
interface 1 1 1

DMA
Dedicated DMA to UART, SPI,
I2S, SDIO slave, SD/MMC host,
EMAC, BT, and Wi-Fi

Dedicated DMA to UART, SPI, AES,
SHA, I2S, and ADC Controller

General-purpose, 5 TX channels, 5 RX
channels

RMT 8 channels 4 channels 1, can be configured to TX/
RX channels 8 channels 2, 4 TX channels, 4 RX channels

Pulse counter 8 channels 4 channels 1 4 channels 1

LED PWM 16 channels 8 channels 1 8 channels 1

MCPWM 2, six PWM outputs ✖ 2, six PWM outputs

USB OTG ✖ 1 1

TWAI®
controller
(compatible
with ISO
11898-1)

1 1 1

SD/SDIO/MMC
host controller 1 ✖ 1

SDIO slave
controller 1 ✖ ✖

Ethernet MAC 1 ✖ ✖

ULP ULP FSM PicoRV32 core with 8 KB SRAM, ULP
FSM PicoRV32 core with 8 KB SRAM, ULP FSM

Debug Assist ✖ ✖ ✖

Security

Secure boot ✔ ✔ Faster and safer, compared with
ESP32 ✔ Faster and safer, compared with ESP32

Flash
encryption ✔ ✔ Support for PSRAM encryption.

Safer, compared with ESP32
✔ Support for PSRAM encryption. Safer,
compared with ESP32

OTP 1024-bit 4096-bit 4096-bit

AES ✔ AES-128, AES-192, AES-256
(FIPS PUB 197)

✔ AES-128, AES-192, AES-256 (FIPS
PUB 197); DMA support

✔ AES-128, AES-256 (FIPS PUB 197); DMA
support

HASH SHA-1, SHA-256, SHA-384,
SHA-512 (FIPS PUB 180-4)

SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, SHA-512/256,
SHA-512/t (FIPS PUB 180-4); DMA
support

SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, SHA-512/256,
SHA-512/t (FIPS PUB 180-4); DMA support

RSA Up to 4096 bits Up to 4096 bits Up to 4096 bits

RNG ✔ ✔ ✔

HMAC ✖ ✔ ✔

Digital
signature ✖ ✔ ✔

XTS ✖ ✔ XTS-AES-128, XTS-AES-256 ✔ XTS-AES-128, XTS-AES-256

5. IoT Hardware Overview

194

Feature ESP32 Series ESP32-S2 Series ESP32-S3 Series

Other

Deep-sleep
(ULP sensor-
monitored
pattern)

100 μA (when ADC work with a
duty cycle of 1%)

22 μA (when touch sensors work with
a duty cycle of 1%) TBD

Size QFN48 5*5, 6*6, depending on
variants QFN56 7*7 QFN56 7*7

1. Note 1: Reduced chip area compared with ESP32
2. Note 2: Reduced chip area compared with ESP32 and ESP32-S2
3. Note 3: Die size: ESP32-S2 < ESP32-S3 < ESP32

ESP32-Cx Family

ESP32-C2 General Information
The ESP32-C2 (ESP8684) [101] family is a series of microcontrollers developed by
Espressif Systems. It's based on the RISC-V architecture and is designed to offer ultra-
low power and small size for various IoT (Internet of Things) applications. This family of
microcontrollers has been designed to target simple, high-volume, and low-data-rate IoT
applications, such as smart plugs and smart light bulbs. ESP32-C2 is also supported by
Espressif's AIoT Private Cloud platform, ESP RainMaker® and supports Matter, a smart-
home connectivity protocol that runs on any IP-supporting network stack.

The ESP32-C2 microcontrollers come with several distinctive features:

▪ RISC-V Core: The ESP32-C2 is based on the RISC-V architecture, an open-source
instruction set architecture (ISA). This differs from the ESP32 series' usual Tensilica
Xtensa LX6 architecture.

▪ Connectivity: Like other ESP32 modules, the ESP32-C2 features built-in Wi-Fi and
Bluetooth 5 LE connectivity. This allows it to connect to the internet and communicate
with other devices over short distances.

▪ Low Power Consumption: ESP32-C2, like other ESP32 variants, supports low-power
modes, which is crucial for battery-powered and energy-efficient IoT applications.

▪ Rich Peripheral Interface Support: It includes a variety of peripherals such as UART,
I2C, SPI, ADC, and more, making it versatile for different applications.

▪ Security Features: The ESP32-C2 family includes various security features like secure
boot, flash encryption, secure storage, and cryptographic accelerators.

▪ Compact Form Factor: The ESP32-C2 family is designed in a very compact form factor
(4mm x 4mm), crucial for applications with limited space or miniaturization.

▪ Cost-Effective Solution: These microcontrollers offer a cost-effective solution for IoT
applications without compromising essential features and performance.

For now the ESP32-C2 family includes the following chips in mass production (figure 122):

▪ ESP8684.

5.1. Most Noticeable Platforms

195

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 122: ESP32-C2

ESP32-C2

ESP32-C2 Architecture Overview
Figure 123[102] shows functional block diagram of ESP32-C2 chip. The main common
features of the ESP32-C2 are:

Processors

▪ Main processor: 32-bit RISC-V single-core CPU,
▪ Cores: 1 up to 120 MHz,
▪ External main crystal clock,
▪ External 32 kHz crystal oscillator for RTC or internal RC.

Wireless connectivity

▪ WiFi: 802.11 b/g/n (802.11n @ 2.4 GHz up to 72.2 Mbit/s) with simultaneous
Infrastructure BSS Station mode/SoftApp mode/Promiscuous mode,

▪ Bluetooth: v5.0 Bluetooth Low Energy (BLE) (speed: 125 Kbps - 2 Mbps) with
multiple advertisement sets

Memory: Internal memory

▪ Embedded flash 1, 2, 4 MB,
▪ ROM: 576 kB (for booting and core functions),
▪ SRAM: 272 kB (16kB for cache),
▪ eFuse - 1 Kbit -256 bits reserved for encryption key and device ID.

Peripheral Input/Output

▪ 14 x GPIO,
▪ 3 × SPI (Serial Peripheral Interface),
▪ 2 x UART (universal asynchronous receiver/transmitter),
▪ 1 × I²C Master (Inter-Integrated Circuit),
▪ LED PWM up to 6 channels,
▪ 1 x 12-bit ADCs (analogue-to-digital converter) up to 5 channels,
▪ General DMA controller (GDMA), with 1 transmit channel and 1 receive channel.

5. IoT Hardware Overview

196

Power Modes

▪ Active Mode,
▪ Modem-sleep mode,
▪ Light-sleep mode,
▪ Deep-sleep mode.

Security

▪ Secure boot,
▪ Flash encryption,
▪ 1024-bit OTP, up to 256-bit for customers,
▪ Cryptographic hardware acceleration:

▪ SHA1/SHA224/SHA256 (FIPS PUB 180-4),
▪ ECC,
▪ random number generator (RNG),
▪ clock glitch filter.

5.1. Most Noticeable Platforms

197

Figure 123: ESP32-C2 functional block diagram

For now the ESP32-C2 family includes the following chips in mass production (table 20):
Table 20: Espressif ESP32-C2 chips

Module Chip
Embedded

Dimensions
(mm) Pins GPIO Flash

(MB)
PSRAM
(MB) Antenna type Development

Board

ESP8684-MINI-1

ESP8684H2
ESP8684H4 13.2×16.6×2.4 53 14 1, 2,

4 N/A PCB ESP8684-DevKitM-1

5. IoT Hardware Overview

198

Module Chip
Embedded

Dimensions
(mm) Pins GPIO Flash

(MB)
PSRAM
(MB) Antenna type Development

Board

ESP8684-MINI-1U

ESP8684H2
ESP8684H4 13.2×12.5×2.4 53 14 1, 2,

4 N/A IPEX ESP8684-DevKitM-1

ESP8684-WROOM-01C

ESP8684H2
ESP8684H4 24×16×3.1 22 14 2, 4 N/A PCB N/A

ESP8684-WROOM-02C

ESP8684H2
ESP8684H4 18x20x3.2 18 14 2, 4 N/A PCB N/A

ESP8684-WROOM-02UC

ESP8684H2
ESP8684H4 18x20x3.2 18 14 2, 4 N/A IPEX ESP8684-DevKitC-02

5.1. Most Noticeable Platforms

199

Module Chip
Embedded

Dimensions
(mm) Pins GPIO Flash

(MB)
PSRAM
(MB) Antenna type Development

Board

ESP8684-WROOM-03

ESP8684H2
ESP8684H4 15×17.3×2.8 11 8 2, 4 N/A PCB N/A

ESP8684-WROOM-04C ESP8684H2
ESP8684H4 24×16×3.1 17 13 2, 4 N/A PCB N/A

ESP8684-WROOM-05

ESP8684H2
ESP8684H4 15×17.3×2.8 7 5 2, 4 N/A PCB N/A

ESP8684-WROOM-06C

ESP8684H2
ESP8684H4 15.8×20.3×2.7 21 14 or

5 2, 4 N/A PCB N/A

ESP8684-WROOM-07

ESP8684H2
ESP8684H4 8.5×12.7×1.9 6 3 2, 4 N/A

Solder pad for
external monopole
antenna

N/A

5. IoT Hardware Overview

200

1. Note 1: When surface mounted, the module has 14 available GPIOs; when vertically soldered, the module
has 5 available GPIOs.

ESP32-C3

ESP32-C3 General Information
The ESP32-C3 family is a series of microcontrollers developed by Espressif Systems. It's
based on the RISC-V architecture and is designed to offer low-power and cost-effective
solutions for various IoT (Internet of Things) applications. These chips integrate WiFi
connectivity, have low power consumption, and offer different peripheral interfaces. They
suit diverse IoT projects, enabling developers to create connected devices efficiently.
The new ESP32-C3 family is known for its compact size, low power consumption, and
integration of WiFi capabilities. These microcontrollers balance performance and power
efficiency, making them suitable for battery-powered IoT devices. They support a variety
of interfaces like SPI, I2C, UART, and ADC, enabling connectivity and interactions with
various sensors and devices. This family of microcontrollers is viral in smart home
devices, wearables, and other IoT applications that require wireless connectivity.

The ESP32-C3 microcontrollers come with several distinctive features:

▪ RISC-V Core: One of the notable aspects of the ESP32-C3 family is the use of the
RISC-V instruction set architecture, which provides efficiency and flexibility. This
architecture allows for customization and optimization, balancing performance and
power consumption.

▪ WiFi Connectivity: These chips integrate WiFi connectivity, enabling devices to
connect to wireless networks, making them ideal for IoT applications that require
internet connectivity.

▪ Low Power Consumption: The ESP32-C3 family is designed to focus on low power
consumption, which is essential for battery-powered or energy-efficient IoT devices.
This makes them suitable for applications where power efficiency is a priority.

▪ Rich Peripheral Interface Support: The microcontrollers have various peripheral
interfaces, such as SPI, I2C, UART, PWM, and ADC. These interfaces allow easy
integration with multiple sensors, displays, and other devices, enhancing the
versatility of applications that can be developed.

▪ Security Features: The ESP32-C3 family includes various security features like secure
boot, flash encryption, secure storage, and cryptographic accelerators. These
elements contribute to the overall security of the devices developed using these
microcontrollers.

▪ Compact Form Factor: The ESP32-C3 family is designed in a compact form factor,
which is advantageous for applications where limited space or miniaturization is a
concern.

▪ Cost-Effective Solution: These microcontrollers offer a cost-effective solution for IoT
applications without compromising essential features and performance.

For now the ESP32-C3 family includes the following chips in mass production (table 21):
Table 21: Espressif ESP32-C3 chips

SoC Variants Core Dimensions
(mm) Pins RAM (kB) Flash

(MB)
PSRAM
(MB)

ESP32-C3(figure
124)

ESP32-C3
ESP32-C3FH4
ESP32-C3FH4X

Single
Core QFN 5×5 32 400 KB RAM, 384 KB ROM, 8 KB RTC

SRAM 4 N/A

5.1. Most Noticeable Platforms

201

SoC Variants Core Dimensions
(mm) Pins RAM (kB) Flash

(MB)
PSRAM
(MB)

ESP8686(figure
125) ESP8686H4 Single

Core QFN 4×4 24 400 KB RAM, 384 KB ROM, 8 KB RTC
SRAM 4 N/A

ESP8685(figure
126)

ESP8685H2
ESP8685H4

Single
Core QFN 4×4 28 400 KB RAM, 384 KB ROM, 8 KB RTC

SRAM 2, 4 N/A

Figure 124: ESP32-C3

Figure 125: ESP8686

Figure 126: ESP8685

ESP32-C3 Architecture Overview
Figure 127 shows a functional block diagram of the ESP32-C3 chip. Main common features
of the ESP32-C3 are: [103]

Processors

▪ Main processor: 32-bit RISC-V single-core CPU,
▪ Cores: 1 up to 160 MHz,
▪ External main crystal clock,
▪ External 32 kHz crystal oscillator for RTC or internal RC.

Wireless connectivity

▪ WiFi: 802.11 b/g/n (802.11n @ 2.4 GHz up to 150 Mbit/s) with simultaneous
Infrastructure BSS Station mode/SoftApp mode/Promiscuous mode.

▪ Bluetooth: v5.0 Bluetooth Low Energy (BLE) (speed: 125 Kbps - 2 Mbps) with
multiple advertisement sets

Memory: Internal memory

▪ Embedded flash 4 MB

5. IoT Hardware Overview

202

▪ ROM: 384 kB (for booting and core functions).
▪ SRAM: 400 kB (16kB for cache).
▪ RTC fast SRAM: 8 kB
▪ eFuse - 4 Kbit - 1792 bits reserved for encryption key and device ID

Peripheral Input/Output

▪ 22 or 16 GPIO
▪ 2 x 12-bit ADCs (analog-to-digital converter) up to 6 channels,
▪ General DMA controller (GDMA), with 3 transmit channels and 3 receive channels,
▪ 1 × I²C (Inter-Integrated Circuit),
▪ 2 x UART (universal asynchronous receiver/transmitter),
▪ 1 × TWAI® controller compatible with ISO 11898-1 (CAN Specification 2.0),
▪ 3 × SPI (Serial Peripheral Interface),
▪ 1 × I²S (Integrated Inter-IC Sound),
▪ LED PWM up to 6 channels,
▪ Internal temperature sensor,
▪ USB Serial/JTAG controller.

Security

▪ Secure boot,
▪ Flash encryption,
▪ 4096-bit OTP, up to 1792-bit for customers,
▪ Cryptographic hardware acceleration:

▪ AES-128/256,
▪ SHA accelerator,
▪ RSA accelerator,
▪ random number generator (RNG),
▪ digital signature.

5.1. Most Noticeable Platforms

203

Figure 127: ESP32-C3 functional block diagram

ESP32-C3 Modules
Espressif also produces modules that are more integrative and more convenient for use
by amateurs and developers. The following modules are currently available:

▪ ESP32-C3-Mini-1/1U[104](figure 128) ,
▪ ESP32-C3-WROOM-02/02U[105](figure 129).

Figure 128: ESP32-C3-Mini-1/1U

5. IoT Hardware Overview

204

Figure 129: ESP32-C3-Wroom-02/02U

ESP32-C3 Development Kits
Development kits are the most convenient for quick application or to check the
capabilities of processors. They are manufactured by Espressif and many companies
specializing in producing prototype circuits. The following are some of the most versatile
modules

▪ Espressif - ESP32-C3-DevkitM-1[106](figure 130),
▪ Espressif - ESP32-C3-DevkitC-02[107](figure 131),
▪ Espressif - ESP32-C3-LCDKit [108](figure 132)
▪ Adafruit - QT Py ESP32-C3 WiFi Dev Board with STEMMA QT[109] (figure 133),
▪ Seeed Studio - XIAO ESP32C3 [110] (figure 134),
▪ M5stack - M5Stamp-C3 [111] (figure 135).

Figure 130: Espressif - ESP32-C3-DevkitM-1

5.1. Most Noticeable Platforms

205

Figure 131: Espressif - ESP32-C3-DevkitC-02

Figure 132: Espressif - ESP32-C3-LCDKit

5. IoT Hardware Overview

206

Figure 133: Adafruit - QT Py ESP32-C3

5.1. Most Noticeable Platforms

207

Figure 134: Seeed Studio - XIAO ESP32C3

5. IoT Hardware Overview

208

Figure 135: M5Stamp-C3

A M5Stamp-C3u version with built-in JTAG interface is also
available

ESP32-C3 chip comparison
The Esp32-C3 as a more modern one, can successfully replace the oldest family of
ESP8266 chips, so table 22 provides a brief comparison of the essential features of the
ESP8266 & ESP32-S3 systems [112].

Table 22: Esp8266 & ESP32-C3 family brief comparison

Feature ESP8266 ESP32-C3 Series

Launch year 2014 2020

Core Xtensa® single core 32-bit LX6 32-bit single-core RISC-V

Wi-Fi protocols 802.11 b/g/, 2.4 GHz up to 72.2.
Mbps 802.11 b/g/n, 2.4 GHz up to 150 Mbps

Bluetooth® ✖ Bluetooth 5.0

Typical frequency 80 MHz 160 MHz

SRAM 160kB 400 KB

ROM 384 KB 384 KB for booting and core functions

Embedded flash ✖ 4 MB or none, depending on variants

RTC memory 768B 8kB

Cache 32KB instruction 16kB

PMU ✔ ✔

Peripherals

ADC 10-bit Two 12-bit SAR ADCs, at most 6 channels

DAC ✖ ✖

Timers 2 x 23 - bit Two 54-bit general-purpose timers, and three watchdog timers

Temperature sensor 1 1

Touch sensor ✖ ✖

Hall sensor ✖ ✖

GPIO 17 22

SPI 2 3

LCD interface ✖ ✖

UART 2 – One Tx only 2

I2C 1- only software 1

I2S 1 1, can be configured to operate with 8/16/24/32-bit resolution
as an input or output channel.

Camera interface ✖ ✖

DMA ✖ General-purpose, 3 TX channels, 3 RX channels

RMT 1 x TX + 1 x RX 4 channels 2, 2 TX channels, 2 RX channels

Pulse counter ✖ ✖

5.1. Most Noticeable Platforms

209

Feature ESP8266 ESP32-C3 Series

LED PWM 5 channels 6 channels

PWM ✖/software 8 ch ✖

TWAI® controller (compatible
with ISO 11898-1) ✖ 1

SD/SDIO/MMC host controller ✖ ✖

SDIO slave controller ✖ ✖

Ethernet MAC ✖ ✖

Debug Assist JTAG ✖ 1

Security

Secure boot ✖ ✔ Faster and safer, compared with ESP32,

Flash encryption ✖ ✔ Safer, compared with ESP32, XTS-AES-128

OTP 1024-bit 4096-bit

AES ✖ ✔ AES-128, AES-256 (FIPS PUB 197); DMA support

HASH SHA-1, SHA-256, SHA-384, SHA-512
(FIPS PUB 180-4) SHA-1, SHA-224, SHA-256 (FIPS PUB 180-4); DMA support

RSA Up to 4096 bits Up to 3072 bits

RNG ✔ ✔

HMAC ✖ ✔

Digital signature ✖ ✔

XTS ✖ ✔ XTS-AES-128

Other

Light sleep 2 mA 130μA

Deep Sleep 20 μA 5 μA

Hibernation - -

Power off 0.5 μA 1μA

Size QFN32 5*5 QFN32 5*5

ESP32-C6

ESP32-C6 General Information
ESP32-C6 is Espressif's first WiFi 6 SoC integrating 2.4 GHz WiFi 6, Bluetooth 5.3 (Low
Energy) and the 802.15.4 protocol. It is based on a high-performance (HP) 32-bit RISC-
V processor, which can be clocked up to 160 MHz, and also has a low-power (LP) 32-bit
RISC-V processor, which can be clocked up to 20 MHz. It has a 320KB ROM, a 512KB
SRAM and works with external flash. The ESP32-C6, with its support for WiFi 6 and
Bluetooth 5.3, can be a potential candidate for devices seeking to integrate into the
Matter standard. Matter intends to create a universal standard for smart home devices to
ensure interoperability and ease of use across different brands and ecosystems. Devices
equipped with the ESP32-C6 can potentially comply with the Matter standard to ensure
compatibility with other Matter-certified devices. They can be used to develop various
other Matter-ecosystem solutions, such as Matter Gateways, Thread Border Routers or
Zigbee Matter Bridges. However, adherence to the Matter standard involves hardware
and software considerations, and manufacturers must ensure their devices meet the
required protocols for certification.

5. IoT Hardware Overview

210

ESP32-C6 Architecture Overview
Figure 136 shows a functional block diagram of the ESP32 chip. Main common features of
the ESP32-C6 are: [113]

Processors

▪ Main processor: 32-bit RISC-V single-core CPU up to 160MHz,
▪ Cores: 1,
▪ External main crystal clock,
▪ External 32 kHz crystal oscillator for RTC or internal RC.

▪ Low-power processor: up to 20MHz
▪ Cores: 1,
▪ External main crystal clock,
▪ External 32 kHz crystal oscillator for RTC or internal RC.

Wireless connectivity

▪ WiFi:(802.11ax 20MHz only non-AP mode),
▪ WiFI:(802.11b/g/n @ 2.4 GHz up to 150 Mbit/s) with simultaneous Infrastructure BSS

Station mode/SoftApp mode/Promiscuous mode,
▪ Bluetooth: v5.3 Bluetooth Low Energy (BLE) (speed: 125 Kbps - 2 Mbps) with

multiple advertisement sets,
▪ IEEE 802.15.4-2015: up to 250 kbps; Thread 1.3; ZigBee 3.0.

Memory: Internal memory

▪ Embedded flash 4 MB,
▪ ROM: 320 kB (booting and core functions),
▪ HP SRAM: 510 kB,
▪ LP SRAM: 16 kB,
▪ RTC fast SRAM: 8 kB,
▪ eFuse - 4 Kbit - 1792 bits reserved for encryption key and device ID.

Peripheral Input/Output

▪ 30xGPIO (QFN40) or 22xGPIO (QFN32),
▪ General DMA controller (GDMA), with 3 transmit channels and 3 receive channels,
▪ 1 × I²C (Inter-Integrated Circuit),
▪ 2 x UART,
▪ 1 x Low-Power UART,
▪ 2 × TWAI® controller compatible with ISO 11898-1 (CAN Specification 2.0),
▪ 2 × SPI (Serial Peripheral Interface for flash),

5.1. Most Noticeable Platforms

211

▪ 1 × SPI (Serial Peripheral Interface universal),
▪ 1 × I²S (Integrated Inter-IC Sound),
▪ 1 × SDIO 2.0 slave controller,
▪ 1 × Motor Control PWM (MCPWM),
▪ LED PWM up to 6 channels,
▪ 1 x USB Serial/JTAG controller,
▪ 1 x Remote control peripheral (TX/RX),
▪ 1 x Parallel IO interface (PARLIO),
▪ 1 x 12-bit SAR ADCs (analog-to-digital converter) up to 7 channels,
▪ 1 x temperature sensor.

Security

▪ Secure boot,
▪ Flash encryption,
▪ External Memory Encryption and Decryption (XTS_AES),
▪ 4096-bit OTP, up to 1792-bit for customers,
▪ Trusted execution environment (TEE) controller and access permission management

(APM),
▪ Cryptographic hardware acceleration:

▪ AES-128/256,
▪ ECC,
▪ SHA accelerator,
▪ RSA accelerator,
▪ HASH (FIPS PUB 180-4),
▪ random number generator (RNG),
▪ digital signature.

5. IoT Hardware Overview

212

Figure 136: ESP32-C6 functional block diagram

ESP32-C6 Modules
The following modules are currently available (table 23):

Table 23: Espressif ESP32-C6 modules
Module Chip embedded Dimensions (mm) Pins Development board

ESP32-C6-Mini-1/1U (figure 137) ESP32-C6FH4 13.2×16.6×2.4
13.2×12.5×2.4 53 ESP32-C6-DevKitM-1

ESP32-C6-WROOM-02/02U (figure 138) ESP32-C6 18×25.5×3.2
18×19.2×3.2 28 ESP32-C6-DevKitC-1

5.1. Most Noticeable Platforms

213

Figure 137: ESP32-C3-Mini-1/1U

Figure 138: ESP32-C3-Wroom-02/02U

ESP32-C6 Development Boards
There are not many prototype kits with ESP32-C6 SOCs on the market yet. Two sets
released by the manufacturer deserve special attention. They are both entry-level
development boards:

▪ Espressif - ESP32-C6-DevkitM-1 [114](figure 139),
▪ Espressif - ESP32-C6-DevkitC-1[115](figure 140) .

5. IoT Hardware Overview

214

Figure 139: Espressif ESP32-C6-DEVKITM-1

Figure 140: Espressif ESP32-C6-DEVKITC-1

They allow you to test all processor functions, including WiFi, Bluetooth LE, Zigbee, and

5.1. Most Noticeable Platforms

215

Thread.

When purchasing the ESP32-C6 development board, please
note that they may contain pre-production versions of
ESP32-C6 that may not have full functionality implemented.

ESP32-Hx Family

ESP32-H2

ESP32-H2 General Information
ESP32-H2 is a family of microcontrollers (SoC) that combines IEEE 802.15.4 connectivity
with Bluetooth 5 (LE). The system does not have a Wi-Fi protocol, but Thread and
Zigbee protocols are available. ESP32-H2 has been certified as a “Zigbee-Compliant
Platform” and has officially become a “Thread-Certified 1.3.0 Component”. The SoC is
powered by a single-core, 32-bit RISC-V microcontroller that can be clocked up to 96
MHz. The ESP32-H2 has been designed especially for connected devices with low power
consumption and security in mind. ESP32-H2 has 320 KB of SRAM with 16 KB of Cache,
128 KB of ROM, 4 KB LP of memory, and a built-in 2 MB or 4 MB SiP flash. It has 19
programmable GPIOs supporting ADC, SPI, UART, I2C, I2S, RMT, GDMA and LED PWM. For
now, the ESP32-H2 family documentation is available as preliminary information only.

ESP32-H2 Architecture Overview
Figure 141 shows a functional block diagram of the ESP32-H2 chip. Main common
features of the ESP32-H2 are [116]:

Processors

▪ Main processor: 32-bit RISC-V single-core CPU up to 96MHz,
▪ Cores: 1

Wireless connectivity

▪ Bluetooth: v5.0 Bluetooth Low Energy (BLE) (speed: 125 Kbps - 2 Mbps),
▪ 802.15.4-2015: up to 250 kbps; stacks include Thread 1.3, Zigbee 3.0, Matter,

HomeKit, MQTT.

Memory: Internal memory

▪ Embedded flash 2 or 4 MB,
▪ ROM: 128 kB (for booting and core functions),
▪ SRAM: 320 kB (for data and instructions),

5. IoT Hardware Overview

216

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ LP memory: 4 KB of SRAM that can be accessed by the CPU. It can retain data in
deep sleep mode,

▪ eFuse - 4 Kbit: 1792 bits are reserved for user data, such as encryption key and
device ID.

Peripheral Input/Output

▪ 19 x GPIO,
▪ 2 x 12-bit ADCs (analog-to-digital converter) up to 5 channels,
▪ Internal temperature sensor,
▪ 3 × SPI (Serial Peripheral Interface),
▪ 2 x UART (universal asynchronous receiver/transmitter),
▪ 2 × I²C (Inter-Integrated Circuit),
▪ 1 × I²S (Integrated Inter-IC Sound),
▪ LED PWM up to 6 channels,
▪ General DMA with - 3 x Tx + 3 x Rx,
▪ PWM for Motor control,
▪ 1 × TWAI® controller compatible with ISO 11898-1 (CAN Specification 2.0),
▪ 1 x Parallel IO controller (PARLIO),
▪ USB Serial/JTAG controller.

Security

▪ Secure boot,
▪ Flash encryption,
▪ 4096-bit OTP, up to 1792-bit for customers,
▪ Cryptographic hardware acceleration:

▪ AES-128/256,
▪ SHA accelerator,
▪ RSA accelerator 3072 bit,
▪ random number generator (RNG),
▪ digital signature.

Since the processor documentation is only available for the
pre-production version, it may change in the final version

5.1. Most Noticeable Platforms

217

Figure 141: ESP32-H2 functional block diagram

ESP32-H2 Development Boards
There are not many prototype kits with ESP32-H2 SOCs on the market yet. One of them
is produced by the Espressif company itself:

▪ Espressif - ESP32-H2-DevkitM-1[117]

5. IoT Hardware Overview

218

Figure 142: ESP32-H2-DevkitM-1

5.1. Most Noticeable Platforms

219

5.1.3. Nordic Semiconductor

Nordic Semiconductor is a company established in Norway that develops and produces
exciting electronic elements capable of transmitting data with radio signals. Among
other advanced chips, their portfolio includes the nRF52 family of SoCs, which support
low-power radio communication with chosen popular protocols, including Bluetooth Low
Energy, ZigBee, NFC, Matter and Thread. They achieved high popularity due to the
low power consumption possible by implementing an advanced, adaptive power
management system. There are a few versions of chips which support different
combinations of protocols. The simplest nRF52805 supports BLE only, while the most
advanced nRF52840 is a fully multiprotocol chip with all previously mentioned standards
support. A non-exhaustive list of features and nRF boards is present in table 24.

Hardware
Nordic Semiconductor's series of SoCs includes a powerful and efficient ARM® core
that, together with advanced power management, allows the creation of advanced
projects with ultra-wol power consumption. All SoCs have Flash memory for programs,
eliminating the need for connecting the external memory. Flash can be programmed
during production, but it also can be re-programmed after implementation in a ready
product with OTA (Over The Air). There are some development boards available for nRF52
series SoCs. Nordic Semiconductor produces development kits for nRF52, nRF52833 and
nRF52840. For the last one, there is also a USB dongle. Other companies also offer their
development boards for the nRF52 series with very interesting Arduino Nano 33 BLE,
Adafruit Feather nRF52 Bluefruit LE, and Adafruit Feather nRF52840 Sense among them.

Processor
All nRF52 SoCs are built with 64 MHz ARM® Cortex-M4 core working at 64MHz of clock.
The central processor is supported by a floating point calculation unit (FPU).

Memory
Different versions contain different sizes of RAM and Flash memory. The nRF52805,
nRF52810, and nRF52811 have 192kB of Flash and 24 kB of RAM. The nRF52820 has
256kB of Flash and 32 kB of RAM. The nRF52832 can have 256 or 512 kB of Flash and
32 or 64 KB of RAM, depending on the version. The nRF 52833 has 512 kB of Flash and
128kB of RAM, and the nRF52840 has 1MB of Flash for the program and 256kB of RAM
for data.

Networking
The nRF52 family was developed to support low-power radio communication using a
2.4GHz band. This set of protocols includes Bluetooth 5.4, Thread, Matter, Zigbee, and
Bluetooth Mesh. nRF52 family of SoCs does not support WiFi directly or wired Ethernet
network protocol. To achieve such functionality, it is necessary to use a network chip
connected via SPI.

Peripherals
The nRF SoCs are equipped with a rich set of peripherals, including:

5. IoT Hardware Overview

220

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ GPIO – General Purpose Input Output lines,
▪ TWI – Two Wire interface that can work in both master or slave mode,
▪ SPI – Serial Peripheral Interface working in master or slave mode,
▪ UART – Universal asynchronous receiver/transmitter,
▪ Timer – timer/counter unit,
▪ RTC – Real-time counter,
▪ WDT – Watchdog timer.

In selected models, additional units are available:

▪ QSPI – Quad SPI and high-speed SPI in some versions,
▪ I2S – Inter-IC sound interface,
▪ USB – Universal serial bus device,
▪ PDM – Pulse Density Modulation (PDM),
▪ PWM – Pulse Width Modulation,
▪ COMP – Analog comparator with low power version LPCOMP,
▪ SAADC – Successive approximation analog-to-digital converter.

All peripherals are connected to the processor via PPI (Programmable Peripheral
Interconnect), ensuring flexible use of units. Peripherals have input signals Task that
trigger their operation and output signals Event, which inform of some situation. These
signals can be connected, creating hardware dependencies between units, making it
possible to synchronise the operation of peripherals without the need for processor use.
Some units can be handled with an internal DMA mechanism (EasyDMA) that supports
data transmission between peripherals and memory without code execution. To enable
safe wireless transmission, some cryptographic hardware units are included:

▪ RNG – Random Number Generator,
▪ ACL – Access contol list,
▪ AAR – Accelerated address resolver,
▪ CCM – Cipher block chaining - message authentication code,
▪ ECB – AES electronic codebook,
▪ Cryptocell.

The Cryptocell is a particular security subsystem developed by ARM®, which provides a
device's root of trust (RoT) and cryptographic services.

Table 24: Hardware summary for nRF family SoCs
Version nRF52805 nRF52810 nRF52811 nRF52820 nRF52832 nRF52833 nRF52840

Bluetooth 5.4 Yes Yes Yes Yes Yes Yes Yes

Bluetooth Mesh Yes Yes Yes Yes

Thread Yes Yes Yes

Matter Yes

ZigBee Yes Yes Yes

5.1. Most Noticeable Platforms

221

Version nRF52805 nRF52810 nRF52811 nRF52820 nRF52832 nRF52833 nRF52840

Flash size [kB] 192 192 192 256 256/512 512 1024

RAM size [kB] 24 24 24 32 32/64 128 256

FPU Yes Yes Yes

Advanced SPI High speed High speed, QSPI

USB Yes Yes Yes

Analog ADC ADC, Comp ADC, Comp Comp ADC, Comp ADC, Comp ADC, Comp

Others PWM, PDM PWM, PDM PWM, PDM, I2S PWM, PDM, I2S PWM, PDM, I2S

No. of GPIOs 10 15-32 15-32 18 32 18-42 48

The most popular boards
Nordic Semiconductor created development boards for their SoCs. The most popular is
nRF52840 DK (figure 143), which includes the nRF52840 chip, SEGGER J-Link debugger,
the micro USB port for flashing, debugging and serial data communication, four user
buttons, and four user LEDs. The board has a shape similar to Arduino, with all 48 GPIOS
available at the header connectors, and is shipped with an NFC antenna.

Figure 143: nRF52840 DK development board

Another board created by Nordic Semiconductor is a USB dongle (figure 144) with the
same nRF52840 SoC built-in. It doesn't have a debugger but supports uploading the code
via USB using the bootloader. It has 15 GPIO lines available.

5. IoT Hardware Overview

222

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_120026_-_kopia.jpg?id=book%3Aiot-open2nded

Figure 144: nRF52840 USB dongle

Adaftuit developed an exciting board nRF52840 Feather Sense (figure 145). It contains
the nRF52840 SoC and a set of different sensors, making it helpful in developing sensor
devices with wireless connectivity. This board also has a Li-Po battery charger and a
digital RGB LED.
Sensors include:

▪ LSM6DS33 accelerometer and gyro,
▪ LIS3MDL magnetometer,
▪ APDS9960 proximity, light, colour and gesture sensor,
▪ MP34DT01-M microphone,
▪ SHT-30 humidity sensor,
▪ BMP280 temperature and air pressure sensor.

5.1. Most Noticeable Platforms

223

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20231002_125838_-_copy.jpg?id=book%3Aiot-open2nded

Figure 145: Adafruit nRF52840 Feather Sense

5. IoT Hardware Overview

224

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_120109_-_kopia.jpg?id=book%3Aiot-open2nded

5.1.4. STM32

The STM32 family is developed and manufactured by STMicroelectronics. They are
considered advanced and efficient and are known for great technical documentation,
versatility, performance, energy efficiency, and reliability. They are also highly
configurable and provide a wide range of features.
For a long time, STM32 delivered MCUs without radio modules; thus, they required
external radio communication interfaces for IoT applications. Recently, a series of chips
have been available with built-in radio modules, primarily using IEEE 802.15.4 (Zigbee,
Thread, and other wireless sensor network protocols) rather than 802.11 (WiFi).

STM manufacturer provides developers with development kits, some of which can
accommodate popular Arduino shields. They also offer a development SDK based on the
popular Eclipse platform (implemented with Java, thus cross-platform). They also ensure
at least 10 years of availability and support.

STM32 MCUs are known for their energy-efficient operation, making them suitable for
battery-powered and low-power IoT applications.

Thanks to the built-in performance options such as an independent vectorised interrupt
system and DMA, industrial grade series can handle video processing, TFT displays, and
so on.

Hardware
STM32 SoCs use ARM Cortex-based cores, starting from M0 to M7 [118]. Some of the SoCs
integrate 2 cores, such as in the case of the radio-equipped models, where the main
core is supported by the extra one (usually M0+), which handles wireless communication
protocols. All MCUs are 32-bit. Some STM32 MCUs tend to tolerate a broader range
of powering voltages. Thus, they may operate on raw battery cells without needing a
voltage conversion and stabilisation.

There are 5 major series of the microcontrollers and microprocessors manufactured by
STM:

▪ High-performance series with Cortex M3 up to Cortex M7.
▪ Mainstream series with Cortex M0 to Cortex M7.
▪ Ultra-low power series with Cortex M0+, via Cortex M4, up to Cortex M33.
▪ Wireless series, with Cortex M4, Cortex M33 and radio coprocessor Cortex M0+.
▪ Industrial grade MP1 microprocessor series, with a mixture of Cortex A7 and Cortex

5.1. Most Noticeable Platforms

225

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

M4 cores (some chips use only A7 core).

The MP1 series is a raw microprocessor that requires external
RAM, Flash, and Input-Output; it is also currently extended
with 64-bit versions. It works with Linux and Android and
can be equipped with Neural Processing Units (NPU) and 3D
graphics processing units (GPU). As they are RAW
microprocessors, they are not considered in the scope of this
book to be directly IoT applications, eventually in a scenario of
the advanced Fog class devices.

Beside STM32 series there is also a SPC5 series, designated for
automotive industry. Those MCUs are Power PC architecture-
based.

Processor
All STM32 use ARM Cortex cores, single, double or in pair with another ARM core
coprocessor, such as in the case of the industrial grade (MP1) microprocessors and
wireless (STM32W) microcontrollers series.

Maximum frequencies depend on the ARM Core model and are between 32MHz for Cortex
M0+ cores and 550MHz for H7. Industrial series MP1 hits even 1GHz.

The majority of the MCUs are marked as F family. This series is
currently replaced with a next-generation G family of chips.

Memory
Built-in RAM, flash, and EEPROM sizes depend on the family of chips and the exact
model within this family. Ultra-low-power devices such as STM32L0 microcontroller have
only 2kB of RAM, 128B of EEPROM, and 16kB of flash. Conversely, the STM32H7
microcontroller can have up to 1184kB of RAM and 2MB of built-in flash. Most MCUs can
extend the memory externally with SPI (even up to dual QSPI interface). Each STM32
series has its variations that vary in the built-in memory size.

Networking
Only the STM32 W series provides radio connectivity integrated into the MCU. Currently,
there are 4 chip series (and each has its variations regarding enclosure size, memory size
(both RAM and flash), number of GPIO pins available, and some advanced functions such
as secure keys management, secure boot, etc.:

5. IoT Hardware Overview

226

▪ STM32 WL series [119] introducing LoRaWAN, Sigfox, W-MBUS, mioty, and virtually
other protocols compatible with (G)FSK, (G)MSK, and BPSK modulations in a single
chip,

▪ STM32 WB0 series [120] designed for energy-efficient applications and Bluetooth 5.3
only,

▪ STM32 WB series [121] with Zigbee, Thread (OpenThread), Matter and Bluetooth 5.4
and BLE, Zephyr and Cordio stacks,

▪ STM32 WBA series [122] with Bluetooth 5.3.

Each series has variations, e.g., the STM32 WL series has STM32WLE5 and STM32WL54
that do not support LoRa, as well as versions STM32WLE5 and STM32WL55 with LoRa.

Peripherals
The STM32 family provides all peripherals and interfaces, but availability and amount
depend on the family, series, and particular model. STM32 MCUs connect the CPU core to
various peripheral modules using a peripheral bus matrix. This matrix allows for flexible
routing of communication between the CPU and peripherals. Each peripheral block has
associated control registers allowing configuring and controlling their operation. Those
registers can be used to set parameters, turn features on or off, and monitor the status
of the peripherals.

Peripherals include:

▪ GPIO,
▪ timers (including hardware-based pulse generation such as PWM and watchdog

timers),
▪ embedded system protocol interfaces UART (USART), SPI (even up to dual QSPI), I2C,

CAN,
▪ ADC and DAC converters,
▪ USB, Ethernet, SDIO, camera (CSI), display (DSI),
▪ RTC interface,
▪ DMA,
▪ interrupt controller,
▪ security and cryptography functions modules.

STM32 has efficient and highly configurable clocks, an NVIC interrupt controller (Nested
Vectored Interrupt Controller), and a DMA that, along with timers, provide great
capabilities for Real-Time applications of high performance and reliability. Figure 146
presents a sample STM32G4 configuration for clocks.

5.1. Most Noticeable Platforms

227

Figure 146: STM32G4 clock configuration capabilities

Video subsystem
Some STM32 MCUs provide computing performance high enough to handle image and
video processing, e.g. STM32F7 and STM32H7 series have hardware-accelerated jpeg
(and thus mjpeg) encoding and decoding. MP1 series can be equipped with an optional
GPU for 3D acceleration. Some of the MCUs include a built-in TFT display controller.

Hardware summary
STM32 shares a common ARM architecture but, depending on the family, has different
cores and, thus, performance and applications. The following chapters show a more in-
depth review of the STM32 MCU hardware.

The most popular boards
STM provides developers with popular development boards virtually for any family of
MCUs. There are also available 3rd party development boards.

There are three types of development boards available (obviously, not for all series):

▪ Nucleo series that share pinout with Arduino, enabling an easy use of Arduino shields.
They provide developers with a built-in ST-link hardware debugger.

▪ Discovery kits, bigger in size and usually rich in connectors, frequently equipped with
external sensors such as MEMS (gyro, accelerometer), microphone, LEDs and so on.
They provide developers with a built-in ST-link hardware debugger.

▪ Evaluation boards are a more advanced version of the Discovery Kits, equipped with a
display, external memory, etc. Their purpose is to demonstrate all capabilities of the
particular MCU.

Sample USB stick, Nucleo kit and development kit for STM32WB55 are present in figures:
147, 148 and 149, respectively.

5. IoT Hardware Overview

228

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/screenshot_from_2023-10-26_14-17-17.png?id=book%3Aiot-open2nded

Figure 147: STM32WB55 USB stick

Figure 148: STM32WB55 Nucleo board

5.1. Most Noticeable Platforms

229

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20231028_095848.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20231028_095828.jpg?id=book%3Aiot-open2nded

Figure 149: STM32WB55 development board

Sample 3rd party evaluation board for STM32F1 MCU is present in the figure 150.

5. IoT Hardware Overview

230

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/image.pf271050.en.feature-description-include-personalized-no-cpn-large.png?id=book%3Aiot-open2nded

Figure 150: SMT32F1 evaluation board

STM32 Performance Series

The STM32 Performance series features performance ARM Cortex cores such as M4, M7,
and M33 with high clock frequencies. This family, even if energy efficient in computing,
is intended not to work in energy-constrained environments. Performance series offers

5.1. Most Noticeable Platforms

231

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20231027_113237.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

bigger RAM and Flash memories, advanced features oriented toward creating rich user
interfaces, such as Chrome-ART Graphic Accelerator, and HDMI support. This series also
provides developers advanced instruction sets such as DSP and FPU. STM32 Performance
Series chips are bigger, more expensive, and more power-consuming. This last factor,
however, can be controlled with advanced power management features.
Applications that benefit from the STM32 Performance series include industrial
automation, high-performance IoT devices, motor control, multimedia, audio processing,
and more. Performance Series MCUs are often used in applications where there is a need
for power and feature-rich peripherals such as displays, cameras, video processing, etc.
A short review of the MCUs and their features is listed in table 25.
Note each row in the table represents a family of devices, and a particular configuration
depends on the exact MCU model. Thus, developers, when looking for specific features,
should refer to the manufacturer's specifications and list of currently available devices
[123].

Table 25: STM32 High Performance series

Series: CPU (Core/Cores) RAM Flash /
EEPROM

Interfaces
(*-not all
chips/
versions)

Voltage
Other features
(*-not all chips/
versions)

STM32F2 Cortex M3@120MHz Up to 128kB 128kB to
1MB

2xUSB OTG
FS/HS
SDIO
USART
SPI
I2C
2xCAN
FS+audio
PLL
3×12 bit
ADC
2×12 bit
DAC*
Ethernet
IEEE1588
Camera*
FSCM*

1.7V to
3.6V

ART - Adaptive Real-
Time Accelerator
16 and 32-bit Timers

STM32F4 Cortex
M4@84MHz-180MHz 32kB to 384kB 64kB to

2056kB

SDIO
USART
SPI
I2C
2xCAN*
I2S+audio
PLL
SAI*
SPDIF RX*
MIPI DSI*
USB 2.0 OTG
FS*
12 bit ADC
12 bit DAC*
DFSDM
Ethernet
IEEE1588*
Dual Quad-
SPI*/QSPI*
Camera*
FSCM*
SDRAM*

1.7V to
3.6V

Random number
generator
Chrom-ART Graphic
Accelerator*
ART Accelerator*
TFT LCD Controller*
16 and 32-bit Timers

STM32H5
Cortex
M33@250MHz (with
DSP+FPU)

32kB/640kB
128kB/
1024kB
to
2048kB

USART
SPI
I2C
12 bit DAC
SDMMC*
2xSDMMC
FMC*
OctoSPI*
1 or 2 12-bit
ADC (5
Msps)*
Op-amp*

SMPS/
LDO or
LDO
only
1.62V to
3.6V

Random Number
Generator
TrustZone*
Advanced Encryption
Services (AES/SAES
PKA OTFDEC HUK ST-
iRoT)*
ART Accelerator
Vbat Battery Voltage
Mode
16 and 32-bit Timers
SHA

5. IoT Hardware Overview

232

Series: CPU (Core/Cores) RAM Flash /
EEPROM

Interfaces
(*-not all
chips/
versions)

Voltage
Other features
(*-not all chips/
versions)

Comparator*
1 or 2 CAN-
FD
DCM HDMI-
CEC
Ethernet
IEEE1588*

DMA
Digital Temperature
Sensor
Unique ID

STM32F7

Cortex M7@216MHz
(with FPU, single or
double precision)
L1 cache
(Instruction/Data)
from 4kB/4kB to
16kB/16kB

From 256kB (includes 64k DTCM) to
512KB (including 128kB DTCM)

64kB to
2048kB

2xUSB OTG
FS/HS
USART
UART
SDIO*
SPI
I2C
1, 2 or 3
CAN v2.0
HDMI-CEC
Ethernet
IEEE1588*
FMC
MDIO slave*
Camera*
Dual mode
Quad-SPI
I2S+audio
PLL
2xSAI
2×12 bit
DAC
SPDIF-RX
3×12-bit
ADC
DF SDM*
MIPI-SDI*
USB HS PHY*

1.7V to
3.6V

TFT LCD controller*
16 and 32-bit timers
AES/TDES crypto
hardware
acceleration*
HASH hardware
acceleration*
JPEG codec hardware
accelerated*
Chrom-ART Graphic
Accelerator

STM32H7

Single core Cortex
M7@(280MHz,
480MHz or 550MHz)
Double cores Cortex
M7@480MHz+Cortex
M4@240MHz
(with FPU, single or
double precision)

564kB(including 128kB DTCM, 432kB
system +4kB backup) to
1.4MB(including 128kB DTCM, 64kB
ITCM + 16kB backup)

Dual
bank,
from
128kB to
2MB

2xUSB OTG
FS/HS
2xSDMMC
USART
UART
SDIO*
SPI
I2C
3 CAN
(2xFD+1xTT)
HDMI-CEC
Ethernet
IEEE1588*
FMC Dual-
mode Quad-
SPI or
2xOcto-SPI*
Camera
3xI2S+audio
PLL
4xSAI
2×12 bit
DAC
SPDIF-RX
3×16-bit
ADC (3.6
Msps)
Op-amp*
Comparator*
MIPI-DSI*

“SMPS/
LDO or
LDO
only
1.62V to
3.6V”

TFT LCD Controller*
16 and 32-bit Timers
HR-Timer*
Crypto Hardware
Acceleration*
HASH Hardware
Acceleration*
JPEG Codec Hardware
Accelerated*
4xDMA
Flash and RAM
Acceleration
Chrom-ART Graphic
Acceleration
Security Services
Option*
Random Number
Generator*

STM32 Mainstream Series

The STM32 Mainstream series is considered a versatile family of MCUs. It is a reasonable

5.1. Most Noticeable Platforms

233

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

balance between power consumption, cost and application flexibility. It is worth
mentioning that the Mainstream series is considered a long-shelf-life one, with support
and availability of chips exceeding 10 years.
Mainstream series CPUs are based on ARM Cortex M0/M0+, M3 and M4 and RAM flash
memory sizes are in a wide range, from 16kB for simple applications up to 1MB to handle
even the most demanding tasks. However, there are no radio modules built in, so IoT
applications require an external RF coprocessor/radio device.

A short review of the MCUs and their features is presented in table 26. Note each row in
the table represents a family of devices, and a particular configuration depends on the
exact MCU model. Thus, developers, when looking for specific features, should refer to
the manufacturer's specifications and list of currently available devices [124].

Table 26: STM32 Mainstream series

Series: CPU (Core/Cores)
RAM
(*-not all
chips/versions)

Flash /
EEPROM

Interfaces
(*-not all
chips/versions)

Voltage
(*-not all chips/
versions)

Other features
(*-not all chips/
versions)

STM32C0 Cortex
M0+@48MHz 6kB or 12kB 16kB or 32kB

I2C
SPI
I2S
2xUSART
ADC

2.0V to 3.6V

5×16-bit Timers
IWDG (Independent
Watchdog)
WWDG (Window
Watchdog)

STM32F0 Cortex M0@48MHz
From 4kB up to
32kB
20B backup
data*

From 16kB to
256kB

2xI2C
2xSPI
I2S
up to 8 USART*
CAN*
USB*
12-bit DAC*
CEC (HDMI-
CEC)*
12-bit ADC

1.8V for low-voltage
product line*
2.0V to 3.6V*
2.4V to 3.6V*

2xWatchdog
Hardware CRC
Internal RC
PLL
RTC Calendar
16 and 32-bit Timers
Temperature Sensor
Multiple Channel DMA
Comparator*
Unique ID
Touch Sense*

STM32G0 Cortex
M0+@64MHz

up to 144
(SRAM)

16kB to 512kB
Securable
Memory Area*

USART
SPI
I2C
12-bit ADC (2.5
MSPS)
12-bit DAC 2
channel*
Low-Power
UART*
USB-C Power
Delivery*
USB DEV/HOST
2.0 FS
CAN-FD*

1.7V to 3.6V*
2.0V to 3.6V*

2xWatchdog
RTC
PLL
Main Oscillator and
32kHz Oscillator
Temperature Sensor
AES-256*
Random Number
Generator*
DMA
Comparator*
32-bit Timer*
16-bit MC Timer
16-bit Timer
Low-Power Timer*

STM32F1 Cortex M3@(24/36/
48/72)MHz 4kB to 96kB 16kB to 1MB

USART
SPI
I2C
3×12-bit ADC
2×12-bit DAC
USB 2.0 FS*
FSMC*
CAN 2.0B*
I2S*
SDIO*
Ethernet
IEEE1588*
CEC (HDMI-
CEC)*

2.0V to 3.6V, GPIOs
are 5V tolerant

16 and 32-bit Timers
Temperature Sensor
3-phase MC Timer*

STM32F3 Cortex M4@72MHz
(DSP+FPU)

16kB to 80kB
CCM-SRAM* 16kB to 512kB

USART
SPI
I2C
USB 2.0 FS*
CAN 2.0B*
I2S
Up to 4 12-bit
ADC*

1.8V for low-voltage
product line
2.0V to 3.6V

Routine Booster
(CCM)
DMA
16 and 32-bit Timers
Hardware CRC
Low and High-Speed
Oscillators
RTC

5. IoT Hardware Overview

234

Series: CPU (Core/Cores)
RAM
(*-not all
chips/versions)

Flash /
EEPROM

Interfaces
(*-not all
chips/versions)

Voltage
(*-not all chips/
versions)

Other features
(*-not all chips/
versions)

3×16-bit ADC*

Temperature Sensor
Capacitive Touch
Sensing
2xUltrafast
Comparators*
Up to 7 Fast
Comparators*
Up to 4 Op-amp
(PGA)*
High-Resolution
Timer*
Advanced 16-bit PWM
Timer

STM32G4
Cortex
M4@170MHz
(DSP+FPU)

Up to 112kB*
128kB*
CCM-SRAM up to
16kB*
CCM-SRAM
32kB*

32kB to 512kB
Flash Memory
with ECC

USART
SPI
I2C
SAI
3/5 12-bit ADC*
4/7 12-bit DAC
FSMC*
Quad-SPI
CAN-FD
USB-C Power
Delivery
USB 2.0 DEV/FS*

1.71V to 3.6V

Math Acceleration
(FMAC, Cordic)
4/6 Op-amps (PGA)*
Up to 3 Ultrafast
Comparators*
ART Accelerator
Advanced Motor
Control Timers
Multiple DMA with
DMAMUX
PLL,
Temperature Sensor
Vbat Battery Voltage
Mode
High Resolution
Timer*

STM32 Low Power Series

The STM32 Low Power series features a powerful yet energy-efficient family of devices
based on the ARM Cortex M0+, M4 and M33. Advanced power management and
availability of several power modes enable the construction of battery-powered devices
capable of operating for months or even years without a need for recharge, e.g. STM32L4
chips can go as low as down to 0.34uA (micro Amper) of power consumption in their
lowest power mode. Still, the versatility of the series brings chips with flash memory up
to 2MB for resource-demanding applications.

A short review of the MCUs and their features is listed in table 27. Note each row in the
table represents a family of devices, and a particular configuration depends on the exact
MCU model. Thus, developers, when looking for specific features, in particular energy
efficiency and power saving options, should refer to the manufacturer's specification and
list of currently available devices [125].

Table 27: STM32 Ultra Low Power series

Series: CPU (Core/Cores)
RAM
(*-not all
chips/
versions)

Flash /
EEPROM

Interfaces
(*-not all chips/
versions)

Voltage
(*-not all
chips/
versions)

Other features
(*-not all chips/versions)

SMT32L0 Cortex M0@32MHz up to 20kB

128kB/
192kB
flash
512B/6K
EEPROM

12-bit ADC (1.14Msps)
USART
USART
SPI
I2C
LP UART
PVD (Programmable
Voltage Detector)*
USB 2.0 FS*
2×12-bit DAC*

Dynamic
Voltage
Scaling
Down to
1.8V*
Down to
1.65V*

Dynamic Voltage Scaling
5 Clock Sources
Advanced RTC with
Calibration
16-bit Timers
Low Power Timers
2x Watchdog
DMA
AES-128
Temperature Sensor*
Segment LCD Driver (4×52/

5.1. Most Noticeable Platforms

235

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Series: CPU (Core/Cores)
RAM
(*-not all
chips/
versions)

Flash /
EEPROM

Interfaces
(*-not all chips/
versions)

Voltage
(*-not all
chips/
versions)

Other features
(*-not all chips/versions)

8×48)*
Random Number Generator*
Touch Sense*
2xUltra Low PPower
Comparators

STM32L4 Cortex-M4@80MHz
(DSP+FPU)

40kB to
320kB

64kB to
1024kB

USART
UART
SPI
I2C
Quad-SPI
1/2 SAI+Audio PLL*
SWP (Bank Swap Pin)
1/2 CAN*
1/2 12-bit DAC*
FSMC
4/8 Sigma Delta
Interfaces*
1-3 12-bit ADC (5Msps)
with 16-bit Over-
sampling
USB 2.0 OTG*
USD 2.0 DEV*

1.71V to
3.6V

ART Accelerator
Chrom-ART Graphic
Accelerator
16 and 32-bit Timers
Temperature Sensor
Vbat Battery Voltage Mode
Unique ID
Capacitive Touch Sensing
Hardware Crypto AES-128/
256*
Hardware SHA-256*
1/2 Op Amps

STM32L4+ Cortex-M4@120MHz
(DSP+FPU) 320/640kB 512kB to

2048kB

USART
UART
SPI
I2C
2xQuad-SPI
SAI+Audio PLL*
CAN
Camera Interface
2×12-bit DAC*
SDIO FSMC
4/8 Sigma Delta
Interfaces*
1/3 12-bit ADC (5Msps)
with 16-bit Over-
sampling
USB 2.0 OTG
TFT Display Interface*
MIPI-DSI*

1.71V to
3.6V 2xWatchdog

STM32L5 Cortex M33@110MHz
(TrustZone+DSP+FPU) 256kB 256kB to

512kB

USART
UART
SPI
I2C
Octo-SPI
FMC*
SAI+Audio PLL*
CAN-FD
2x 4ch Sigma Delta
Interfaces*
2×12-bit DAC*
2×12-bit ADC (5 Msps)
with 16-bit Over-
sampling
USB 2.0 DEV
USB 2.0 HS
USB-C Power Delivery

1.71V to
3.6V

16 and 32-bit Timers
ART Accelerator
Hardware Accelerated SHA
Random Number Generator
Temperature Sensor
Vbat Battery Voltage Mode
Unique ID
Capacitive Touch Sensing
2xOp Amps
2xComparators
Hardware Crypto AES, PKA,
OTFDEC 128/256-bit*

STM32U5 Cortex M33@160MHz
(TrustZone+DSP+FPU)

274kB/
786kB/
2514kB
Dual bank
flash*

128kB to
4096kB

SDIO
1/2 Octo-SPI*
Hexadeca-SPI*
FSMC*
HSPI*
USB 2.0 FS*
USB 2.0 HS*
USB-C Power Delivery*
TFT-LCI and DSI
Interfaces*
2×12-bit DAC*
1/2 14-bit ADC (2
Msps)*
1×12-bit ADC (2Msps)
USART
UART
LPUART

1.71V to
3.6V

16 and 32-bit Timers
2xAdvanced Motor Control
Timers
4xUltra Low Power Timers
Neo-Chrom GPU*
Chrom-ART Graphic
Accelerator*
Hardware Crypto AES 128/
256, PKA, OTFDEC 128/
256-bit*
2xWatchdog
RTC
2xOp Amps
2xComparators
Hardware Accelerated SHA
and MD5
Random Number Generator

5. IoT Hardware Overview

236

Series: CPU (Core/Cores)
RAM
(*-not all
chips/
versions)

Flash /
EEPROM

Interfaces
(*-not all chips/
versions)

Voltage
(*-not all
chips/
versions)

Other features
(*-not all chips/versions)

SPI
I2C
CAN-FD
ADF*
Camera*
MDF*
SAI*
SD/MMC*

Capacitive Touch Sensing
LPDMA
Temperature Sensor
Unique ID

STM32 Wireless Series

The STM32 Wireless series is the only chip family with built-in wireless capabilities. This
series uses ARM Cortex M4 and additional Arm Cortex M0+ as a radio coprocessor or,
eventually, a single ARM Cortex M0+ core in low power version.
The STM32 Wireless series features built-in radio modules (sub-gigahertz or 2.4GHz) for
IoT protocols such as:

▪ Bluetooth/BLE,
▪ LoRa/LoRaWAN,
▪ Matter,
▪ Zigbee,
▪ Thread/OpenThread,
▪ sigFox,
▪ mioty,
▪ M-Bus,
▪ 2FSK,
▪ 2GFSK,
▪ BPSK,
▪ GMSK.

Applications that benefit from the STM32 Wireless series include industrial automation,
IoT devices, and smart homes.

A short review of the MCUs and their features is presented in table 28. Note each row in
the table represents a family of devices, and a particular configuration depends on the
exact MCU model. Thus, developers, when looking for specific features, should refer to
the manufacturer's specification and list of currently available devices [126].

Table 28: STM32 Wireless series

Series: CPU (Core/
Cores)

RAM
(*-not all
chips/
versions)

Flash /
EEPROM

Interfaces
(*-not all chips/
versions)

Voltage
(*-not all
chips/
versions)

Wireless
communication
(*-not all chips/
versions)

Other features
(*-not all
chips/versions)

STM32WL
Cortex
M4@48MHz
Cortex
M0+@48MHz*

Up to
64kB

Up to
256kB

USART
LPUART
SPI
I2C

1.8V to 3.6V
LDO with DC-
to-DC
converter

Multi-Modulation
Sub-GHz Radio
150MHz-960MHz
2xProgrammable

16 and 32-bit
Timers
ART Accelerator
Hardware Crypto

5.1. Most Noticeable Platforms

237

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Series: CPU (Core/
Cores)

RAM
(*-not all
chips/
versions)

Flash /
EEPROM

Interfaces
(*-not all chips/
versions)

Voltage
(*-not all
chips/
versions)

Wireless
communication
(*-not all chips/
versions)

Other features
(*-not all
chips/versions)

I2S
1×12-bit DAC
1×12-bit ADC

built-in

Power Outputs
LoRa*
(G)FSK
(G)MSK
BPSK

AES 128/256,
PKA
Random Number
Generator
PCROP/WRP
Temperature
Sensor
Unique ID
DMA
2xUltra Low
Power
Comparators
RTC
Low Power Timer

STM32WB0 Cortex
M0+@64MHz 64kB 512kB

SPI
LPUART
USART
I2C
I2S
IrDA
1×12-bit ADC

1.7V to 3.6V 2.4GHz
BLE 5.3

RTC
Watchdog
Random Number
Generator
ECC
RSA
Low Power Timer
DMA
RTC
16-bit Timers
Unique ID
Hardware Crypto
AES 128/256,
PKA, RSA
Vbat Monitoring
Temperature
Sensor

STM32WB
Cortex
M4@64MHz
Cortex
M0+@32MHz

48kB to
256kB

256kb to
1024kB

SPI
LPUART
USART
I2C
I2S
SAI*
Quad-SPI*
1×12-bit ADC
USB 2.0 FS*

1.71V to 3.6V*
2.0V to 3.6V*

2.4GHz
BLE 5.2

16 and 32-bit
Timers
1xComparator
Hardware Crypto
AES 128/256,
PKA
Random Number
Generator
Temperature
Sensor
Unique ID
Vbat monitoring
RTC
Low Power Timer

STM32WBA
Cortex
M33@100MHz
(MPU+DSP+FPU)

96kB*
128kB*
512B OTP

512kB/
1024kB

I2C
SPI
LPUART
USART
1×12-bit ADC
(2.5Mspip)
hardware
oversampling

1.71V to 3.6V 2.4GHz
BLE 5.3

16 and 32-bit
Timers
2xWatchdog
IR Timer
RTC
Hardware Crypto
AES/S-AES 128/
256, PKA
SHA
Random Number
Generator
Temperature
Sensor
Unique ID
Vbat monitoring
ART-Accelerator
Low Power Timer
1xComparator
Capatitive Touch
Sensing

5. IoT Hardware Overview

238

5.1.5. Raspberry Pi General Information

The Raspberry Pi is a series of small single-board computers developed in the UK by
the Raspberry Pi Foundation to promote modern computer science in schools and create
electronic communities. Adding the 40-pin GPIO connector to the computer board allows
developers to improve their programming skills and opens new horizons in controlling
processes and devices unavailable for desktop computers. According to the Raspberry
Pi Foundation, the board's sales in July 2017 reached nearly 15 million units. The first
generation of this new board type was developed and then released in February 2012
– Raspberry Pi Model B. Each Raspberry Pi board contains hardware modules which
together make it a wholly usable PC like a computer whose size fits the typical credit card
(85/56 mm) size and small power consumption < 3.5 W. This makes this kind of single
board computer one of the most popular in the developers' community. Today, thousands
of hardware implementation projects exist for users who want to learn modern hardware
and software controlling units and include them in their projects.

A dozen even more powerful clones share a familiar concept, size, and connectors
(mostly GPIO, USB, Ethernet and CSI/DSI) with genuine RPIs, such as OrangePi, BananaPi
and others. They differ in CPU (MCU), GPU, and RAM; some are even more powerful than
genuine Raspberries. Still, they are ARM-based and powered with Android or Linux.

Because the power consumption in the latest devices, such as Raspberry Pi 4 and 5, can
exceed 20W, they are considered mains powered and, thus, in the IoT ecosystem, play
the role of gateways, routers and, in general, fog-class devices rather than edge-class.
Still, this classification is fuzzy as there are dozens of examples of how to use Raspberry
Pi, e.g. sensors-network component.

Besides advanced fog-class devices, Raspberry recently started to hit the edge-class IoT
development market (low-powered, end-node devices) with their RP2040 MCU.

Raspberry Pi Fog Class Devices Hardware Review

Hardware
Hardware boards (depending on the manufactured model) contain interfaces: Ethernet,
Bluetooth, WiFi, USB, AUDIO, HDMI and GPIO ports [127]. The Raspberry Pi boards have
evolved through several versions varying in memory capacity, System on Chips (SoC) and
processor units. The first generation models of Raspberry Pi used the Broadcom BCM2835
(ARMv6 architecture) based on a 700 MHz ARM11176JZF-S processor and VideoCore IV
graphics processing Unit (GPU). Models Pi 1 and B+, developed later, use the five-point
USB/Ethernet hub chip, while the Pi 1 Model B only contains two. The Pi Zero USB port is
connected directly to the SoC and uses the (OTG) micro USB port.

Processor
The first Raspberry Pi 2 models use the 900 MHz Broadcom BCM2836 SoC 32-bit quad-

5.1. Most Noticeable Platforms

239

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

core ARM Cortex-A7 processor with a shared 256 KB L2 cache. After these earlier models,
the Raspberry Pi 2 V1.2 has been upgraded to a Broadcom BCM2837 SoC equipped with a
1.2 GHz 64-bit quad-core ARM Cortex-A53 processor. Next, the Raspberry Pi 3 series uses
the same SoC. They use the Broadcom BCM2837 SoC with a 1.2 GHz 64-bit quad-core
ARM Cortex-A53 processor with a 512 KB shared L2 cache. The Raspberry Pi 3B+ uses
the same processor (BCM2837B0) running at 1.4 GHz. The Raspberry Pi 4 is based on
Broadcom BCM2711, a quad-core Cortex-A72 64-bit SoC at 1.5 GHz. Raspberry Pi 5 works
with a maximum of 2.4GHz. The following Raspberry Pi generations will be increasingly
powerful, but their power consumption is also rising, forcing developers to use CPU and
GPU heatsinks and more robust power sources.

RAM
The initial Raspberry Pi boards were designed with 128 MB RAM, which was allocated
between the GPU and CPU by default. In the newer edition (including Model B and Model
A), the RAM was extended to 256 MB and split into the regions. The default split was
192 MB (RAM for CPU), which is sufficient for standalone 1080p video decoding or 3D
modelling. Models B with 512 MB RAM initially, memory was split into files released
(arm256_start.elf, arm384_start.elf, arm496_start.elf) for 256 MB, 384 MB and 496 MB
CPU RAM (and 256 MB, 128 MB and 16 MB video RAM). The Raspberry Pi 2 and 3 are
shipped with 1 GB of RAM. The Raspberry Pi 4 can have 1, 2, 4 or even 8 GB of RAM. The
Raspberry Pi Zero and Zero W contains 512 MB of RAM.

Networking
The Model A, A+ and Pi Zero have no dedicated Ethernet interface and can be connected
to a network using an external USB Ethernet or WiFi adapter. In Models B and B+, the
Ethernet port is built-in to the USB Ethernet adapter using the SMSC LAN9514 chip. The
Raspberry Pi 3 and Pi Zero W (wireless) models are equipped with 2.4 GHz WiFi 802.11n
(150 Mbit/s) and Bluetooth 4.1 (24 Mbit/s) based on Broadcom BCM43438 FullMAC chip.
The Raspberry Pi 3 also has a 10/100 Ethernet port. The latest Raspberry Pi 4 contains a
dual band 2.4 / 5 GHz WiFi network adapter (IEEE 802.11ac), Bluetooth 5.0, and Gigabit
Ethernet.

Peripherals
The Raspberry Pi may be controlled with any generic USB keyboard and mouse. It can
also use USB storage, USB to MIDI converters, and virtually any other device/component
which is USB compatible. Other peripherals can be attached through the various pins and
connectors on the surface of the Raspberry Pi.

Video subsystem
The video controller supports standard modern TV resolutions, such as HD and Full HD,
and higher. It can emit 640 × 350 EGA; 640 × 480 VGA; 800 × 600 SVGA; 1024 ×
768 XGA; 1280 × 720 720p HDTV; 1280 × 768 WXGA variant; 1280 × 800 WXGA
variant; 1280 × 1024 SXGA; 1366 × 768 WXGA variant; 1400 × 1050 SXGA+; 1600 ×
1200 UXGA; 1680 × 1050 WXGA+; 1920 × 1080 1080p HDTV; 1920 × 1200 WUXGA.
Higher resolutions, such as up to 2048 × 1152, may work or even 3840 × 2160 at 15
Hz. Although the Raspberry Pi 3 does not include H.265 hardware decoders, the CPU
is more powerful than its predecessors, potentially fast enough for software decoding
H.265-encoded videos. The Raspberry Pi 3 GPU runs at a higher clock frequency – 300
or 400 MHz, compared to 250 MHz in previous versions. The Raspberry Pi can generate
576i and 480i composite video signals, as used on old-style (CRT) TV screens and

5. IoT Hardware Overview

240

less-expensive monitors through standard connectors – either RCA or 3.5 mm phono
connector, depending on the models. The television signal standards supported are
PAL-BGHID, PAL-M, PAL-N, NTSC and NTSC-J. The Raspberry Pi 4 has two micro HDMI
connectors that support 4K displays with a refreshing rate of 60Hz.

Real-Time Clock
None of the current Raspberry Pi models has a built-in real-time clock. Developers who
need real clock time in their project can retrieve the time from a network time server
(NTP) or use the external RTC module connected to the board via SPI or I²C interface. To
save the file system consistency, the Raspberry Pi automatically saves time on shutdown
and reloads time at boot. One of the best RTC solutions for keeping the proper board time
is to use the I²C DS1307 chip containing a hardware clock with a battery power backup.

Hardware Specification
Following tables 29, 30, 31, 32 and 33 present technical details of the RPI fog class IoT
devices.

Table 29: Raspberry Pi Models A Comparative Table
Version Model A

RPi 1 Model A RPi 1 Model A+ RPi 3 Model A+

Release date 2/1/2013 11/1/2014 11/1/2018

Target price
(USD) 25 20 25

Instruction
set ARMv6Z (32-bit) ARMv8 (64-bit)

SoC Broadcom BCM2835 Broadcom BCM2837B0

FPU VFPv2; NEON not supported VFPv4 + NEON

CPU 1× ARM1176JZF-S 700 MHz 4× Cortex-A53 1.4 GHz

GPU

Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @ 300 MHz, video part of GPU @ 400 MHz)

OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8 GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-profile decoder and encoder (BCM2837: 1080p60)

Memory
(SDRAM) 256 MB (shared with GPU) 512 MB (shared with GPU) as of 4 May 2016. Older boards

had 256 MB (shared with GPU)

USB 2.0
ports 1 (direct from BCM2835 chip) 1 (direct from BCM2837B0

chip)

Video input 15-pin MIPI camera interface (CSI) connector, used with the Raspberry Pi camera or Raspberry Pi NoIR camera

Video
outputs

HDMI (rev 1.3) composite video (RCA jack), MIPI
display interface (DSI) for raw LCD panels

HDMI (rev 1.3), composite video (3.5 mm TRRS jack), MIPI
display interface (DSI) for raw LCD panels

Audio inputs As of revision 2 boards via I²S

Audio
outputs Analog via 3.5 mm phone jack; digital via HDMI and, as of revision 2 boards, I²S

On-board
storage SD, MMC, SDIO card slot (3.3 V with card power only) MicroSDHC slot

On-board
network None

2.4 GHz and 5 GHz IEE
802.11.b/g/n/ac wireless
LAN, Bluetooth 4.2/BLE

Low-level
peripherals

8× GPIO plus the following, which can also be used as
GPIO: UART, I²C bus, SPI bus with two chip selects, I²S
audio +3.3 V, +5 V, ground

17× GPIO plus the same specific functions, and HAT ID bus

Power
ratings 300 mA (1.5 W) 200 mA (1 W)

Power source 5 V via MicroUSB or GPIO header

5.1. Most Noticeable Platforms

241

Size 85.60 mm × 56.5 mm (3.370 in × 2.224 in), excluding
protruding connectors

65 mm × 56.5 mm × 10 mm
(2.56 in × 2.22 in × 0.39 in),
same as HAT board

65 mm x 56.5 mm

Weight 31 g (1.1 oz) 23 g (0.81 oz)

Console Adding a USB network interface via tethering or a serial cable with an optional GPIO power connector

Generation 1 1 + 3+

Obsolescence
n/a n/a in production until at least

January 2023
Statement

Type Model A

Table 30: Raspberry Pi Models B Comparative Table
Version Model B

RPi 1 Model B RPi 1 Model B+ RPi 2
Model B

RPi 2
Model B

v1.2
RPi 3 Model B RPi 3 Model B+

Release date April–June 2012 7/1/2014 2/1/2015 10/1/
2016 2/1/2016 3/14/2018

Target price
(USD) 35 25 35

Instruction
set ARMv6Z (32-bit) ARMv7-A

(32-bit) ARMv8-A (64/32-bit)

SoC Broadcom BCM2835 Broadcom
BCM2836 Broadcom BCM2837 Broadcom

BCM2837B0

FPU VFPv2; NEON not supported VFPv3 +
NEON VFPv4 + NEON

CPU 1× ARM1176JZF-S 700 MHz
4×
Cortex-A7
900 MHz

4×
Cortex-
A53 900
MHz

4× Cortex-A53 1.2
GHz

4× Cortex-A53 1.4
GHz

GPU

Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @ 300 MHz, video part of GPU @ 400 MHz)

OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8 GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-profile decoder and encoder (BCM2837: 1080p60)

Memory
(SDRAM)

512 MB (shared with GPU) as of 4 May 2016.
Older boards had 256 MB (shared with GPU) 1 GB (shared with GPU)

USB 2.0
ports

2 (via on-board 3-port
USB hub) 4 (via on-board 5-port USB hub)

Video input 15-pin MIPI camera interface (CSI) connector, used with the Raspberry Pi camera or Raspberry Pi NoIR camera

Video
outputs

HDMI (rev 1.3),
composite video (RCA
jack), MIPI display
interface (DSI) for raw
LCD panels

HDMI (rev 1.3), composite video (3.5 mm TRRS jack), MIPI display interface (DSI) for raw
LCD panels

Audio inputs As of revision 2 boards via I²S

Audio
outputs Analog via 3.5 mm phone jack; digital via HDMI and, as of revision 2 boards, I²S

On-board
storage SD, MMC, SDIO card slot MicroSDHC slot MicroSDHC slot, USB Boot Mode

On-board
network 10/100 Mbit/s Ethernet (8P8C) USB adapter on the USB hub

10/100 Mbit/s
Ethernet,

10/100/1000 Mbit/s
Ethernet (real speed
max 300 Mbit/s),

802.11b/g/n single
band 2.4 GHz
wireless,

802.11b/g/n/ac dual
band 2.4/5 GHz
wireless,

Bluetooth 4.1 BLE Bluetooth 4.2 LS BLE

Low-level
peripherals

8× GPIO plus the
following, which can 17× GPIO plus the same specific functions and HAT ID bus

5. IoT Hardware Overview

242

Version Model B

also be used as GPIO:
UART, I²C bus, SPI bus
with two chip selects,
I²S audio +3.3 V, +5 V,
ground.

An additional 4× GPIO
are available on the P5
pad if the user is willing
to make solder
connections

Power
ratings 700 mA (3.5 W)

200 mA (1 W)
average when idle,
350 mA (1.75 W)
maximum under
stress (monitor,
keyboard and
mouse connected)

220 mA (1.1 W)
average when idle,
820 mA (4.1 W)
maximum under
stress (monitor,
keyboard and mouse
connected)

300 mA (1.5 W)
average when idle,
1.34 A (6.7 W)
maximum under
stress (monitor,
keyboard, mouse and
WiFi connected)

459 mA (2.295 W)
average when idle,
1.13 A (5.661 W)
maximum under
stress (monitor,
keyboard, mouse and
WiFi connected)

Power source 5 V via MicroUSB or GPIO header

Size 85.60 mm × 56.5 mm (3.370 in × 2.224 in), excluding protruding
connectors

85.60 mm × 56.5 mm × 17 mm (3.370 in ×
2.224 in × 0.669 in)

Weight 45 g (1.6 oz)

Console Adding a USB network interface via tethering or a serial cable with optional GPIO power connector

Generation 1 1 + 2 2 ver 1.2 3 3+

Obsolescence
n/a n/a n/a n/a n/a in production until at

least January 2023
Statement

Type Model B

Table 31: Raspberry Pi Models Compute Module Comparative Table
Version Compute Module*

Compute Module
1

Compute Module
3
&

Compute Module
3 Lite

Compute Module 3+
&

Compute Module 3+
Lite

Compute Module 4
&

Compute Module 4 Lite

Release date April 2014 January 2017 January 2017 October 2020

Instruction
set ARMv6Z (32-bit) ARMv8-A (64/32-bit)

SoC Broadcom
BCM2835 Broadcom BCM2837 Broadcom BCM2837B0 Broadcom BCM2711

FPU VFPv2; NEON not
supported VFPv4 + NEON

CPU 1× ARM1176JZF-S
700 MHz 4× Cortex-A53 1.2 GHz 4× Cortex-A72 1.5 GHz

GPU Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @
300 MHz, video part of GPU @ 400 MHz) Broadcom VideoCore VI @ 500 MHz

Memory
(SDRAM)

512 MB (shared
with GPU) 1 GB (shared with GPU) 1,2,4,8 GB

USB 2.0
ports

1 (direct from
BCM2835 chip)

1 (direct from
BCM2837 chip)

1 (direct from
BCM2837B0 chip) 1

Video input 2× MIPI camera interface (CSI) 2-lane MIPI CSI camera interface,
4-lane MIPI CSI camera interface

Video
outputs 1xHDMI 2xHDMI

On-board
storage

4 GB eMMC flash
memory chip

4 GB eMMC flash
memory chip

or
MicroSDHC slot for

8/16/32 GB eMMC flash
memory chip

or
MicroSDHC slot for Lite

8/16/32 GB eMMC flash memory chip
or

MicroSDHC slot for Lite version

5.1. Most Noticeable Platforms

243

Version Compute Module*

Lite version version

On-board
network None

10/100/1000Mbps Ethernet
b/g/n/ac dual-band (2.4/5GHz) WiFi

5.0 BLE (optional)

Low-level
peripherals

46× GPIO, some of which can be used for specific functions,
including I²C, SPI, UART, PCM, PWM

28 × GPIO supporting either 1.8v or 3.3v
signalling and peripheral options

Power
ratings 200 mA (1 W) 700 mA (3.5 W) not rated not rated

Power source 2.5–5 V, 3.3 V, 2.5–3.3 V, and 1.8 V 5V

Size 67.6 mm × 30 mm (2.66 in × 1.18 in) 67.6 mm × 31 mm (2.66 in × 1.22 in) 55 mm x 40 mm

Obsolescence manufacturing until at least January 2026 manufacturing until at least January 2028

Type Compute Module*

Table 32: Raspberry Pi Models Zero Comparative Table
Version Zero

RPi Zero PCB v1.2 RPi Zero PCB v1.3 RPi Zero W

Release date 11/1/2015 5/1/2016 2/28/2017

Target price (USD) 5 10

Instruction set ARMv6Z (32-bit)

SoC Broadcom BCM2835

FPU VFPv2; NEON not supported

CPU 1× ARM1176JZF-S 1 GHz

GPU

Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @ 300 MHz, video part of GPU @ 400 MHz)

OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8 GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-profile decoder and encoder (BCM2837:
1080p60)

Memory (SDRAM) 512 MB (shared with GPU)

USB 2.0 ports 1 Micro-USB (direct from BCM2835 chip)

Video input None MIPI camera interface (CSI)

Video outputs Mini-HDMI, 1080p60, composite video via marked points on PCB for optional header pins

Audio inputs As of revision 2 boards via I²S

Audio outputs Mini-HDMI, stereo audio through PWM on GPIO

On-board storage MicroSDHC

On-board network None

802.11b/g/n single band 2.4 GHz
wireless,

Bluetooth 4.1 BLE

Low-level
peripherals 17× GPIO plus the same specific functions and HAT ID bus

Power ratings 100 mA (0.5 W) average when idle, 350 mA (1.75 W) maximum under stress (monitor, keyboard and mouse
connected)

Power source 5 V via MicroUSB or GPIO header

Size 65 mm × 30 mm × 5 mm (2.56 in × 1.18 in × 0.20 in)

Weight 9 g (0.32 oz)

Console Adding a USB network interface via tethering or a serial cable with an optional GPIO power connector

Generation PCB ver 1.2 PCB ver 1.3 W (wireless)

Obsolescence n/a, or see PCB ver
1.3

Zero is currently stated as being not before
January 2022 n/a

5. IoT Hardware Overview

244

Version Zero

Statement

Type Zero

Table 33: Raspberry Pi 4B & 5 Models Table
Version Model B

Pi4 Pi5

Release date 01/06/2019 28/09/2023

SoC Broadcom BCM2711 Broadcom BCM2712

CPU 1,5 GHz quad-core ARM-8 Cortex-A72 (64-bit) 2.4 GHz quad-core Cortex-A76 (64bit)

GPU Broadcom VideoCore VII

Memory (SDRAM) 1GB/2GB/4GB/8GB 4GB/8GB

USB ports USB 2×2.0 2×3.0

Video outputs Composite (PAL/NTSC) 2x micro HDMI

Audio outputs 2xmicro HDMI

On-board storage MicroSD MicroSD with SDR104

On-board network 100/1000 Ethernet (RJ45), WiFi (2.4-5 GHz 802.11b/g/n/ac) Bluetooth 5.0 BLE

Low-level peripherals 40x GPIO, CSI, DSI 40x GPIO, 2CSI/DSI, PCle 2.0

Power source 5V/AA UCB-C, PoE or GPIO

Size 85,60 mm × 56,50 mm

Weight 46 g

OS systems Raspbian, Windows 10 IoT Core, OSMC_Pi2, NOOBS, RISC OS, Ubuntu MATE, Linux Q83, Android, Android TV

Type Model B

Raspberry Pi Boards
As for today, on the market, a few models of Raspberry Pi boards are available, from
tiny ones to more powerful ones. Users can choose the right board to fit the price and
functionality of their project development needs. Figures 151, 152, 153, 154, 155, 156,
157, 158, 159 and 160, are presenting Raspberry Pi models, starting from the simplest
and finishing on the most advanced and most modern ones.

Figure 151: Raspberry Pi Zero [128].

5.1. Most Noticeable Platforms

245

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_zero.png?id=book%3Aiot-open2nded

Figure 152: Raspberry Pi Zero W[129].

Figure 153: Raspberry Pi Zero 2 W[130].

Figure 154: Raspberry Pi 1 Model A

Figure 155: Raspberry Pi 1 Model A+ revision 1.1 [131].

5. IoT Hardware Overview

246

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/raspberry_pi_zero_w.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/raspberry_pi_zero_2_w.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_1a.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_a_rev1.1.png?id=book%3Aiot-open2nded

Figure 156: Raspberry Pi 1 Model B revision 1.2 [132].

Figure 157: Raspberry Pi 2 [133].

Figure 158: Raspberry Pi 3 [134].

Figure 159: Raspberry Pi 4 [135].

5.1. Most Noticeable Platforms

247

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_b_rev2.0.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_b_rev1.2.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberrypi_3_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/raspberry_pi_4_b.png?id=book%3Aiot-open2nded

Figure 160: Raspberry Pi 5 [136].

General-Purpose Input-Output (GPIO) Connector
Each Raspberry Pi model is equipped with a standard 34/40-pis male connector
containing universal GPIO ports, VCC 3.3/5V, GND, CLK, I2C/SPI bus pins, which
developers can use to connect their external sensors, switches and other controlled
devices to the Raspberry Pi board and then program their behaviour within the code
loaded to the board.

▪ Raspberry Pi 1 Models A+ and B+, Pi 2 Model B, Pi 3 Model B and Pi Zero (and Zero
W) GPIO J8 have a 40-pin pinout. Raspberry Pi 1 Models A and B have only the first 26
pins.

Figure 161: Raspberry Pi 1 pins

▪ Model B rev. 2 also has a pad (P5 on the board and P6 on the schematics) of 8 pins,
offering access to 4 GPIO connections.

5. IoT Hardware Overview

248

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/raspberry-pi-5.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gpio1.png?id=book%3Aiot-open2nded

Figure 162: Raspberry Pi 2 & 3 pins

HDMI Port
Each Raspberry Pi model is equipped with the standard, mini or micro HDMI port, which
allows the user to connect the monitor or TV set to the board. The electronic schematic
is shown in the picture.

Figure 163: Raspberry HDMI port connection schematic

Camera Port CSI
Raspberry Pi boars Zero, 1, A+, 2, 3, 4 and 5 are equipped with a Camera interface (CSI)
port, allowing the user to connect the CCD camera following the MIPI standard.

5.1. Most Noticeable Platforms

249

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gpio2.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_hdmi_port.png?id=book%3Aiot-open2nded

Figure 164: Raspberry CSI camera schematic [137].

Figure 165: Raspberry CSI camera view [138].

Display Port (DSI)
Raspberry Pi boards 2 to 5 have an LCD Display interface(DSI) port, allowing the user to
connect the LCD touch display to the board. The official Raspberry Pi LCD touch display
shown in the figure below is 800 x 480 dpi 7“ in size and can be connected to the
Raspberry board using the DSI interface. Such an assembly can be used in the projects to
display a controlling application view, and the ability to handle fingers and a touchscreen
controls the project behaviour. The LCD can be mounted in portrait/landscape orientation,
fitting the best user needs.

5. IoT Hardware Overview

250

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_cam_port.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_cam.png?id=book%3Aiot-open2nded

Figure 166: Raspberry DSI display port schematic [139].

Figure 167: Raspberry DSI LCD display kit [140].

USB and LAN Ports
Raspberry PI models Zero, 1, A+, 2, 3, 4 and 5 contain USB ports (from 1 up to 4), and all
but Zero also have a LAN port for TCP/IP network connections. These ports can be used
for mouse/keyboard connection or if the software has the appropriate driver installed to
handle other USB devices.

Since generation 4, devices are equipped with 2 USB 3.0 ports as in figure 168.

Starting with Raspberry 3B+, the Ethernet port is a gigabit one that can reach up to
1Gbps, theoretically. Prior 3B (including) it is fast Ethernet, 100Mbps.

In RPI 3B+, gigabit Ethernet is connected internally to the USB
2.0 controller with a maximum throughput of about 480Mbps
(practical 200Mbsp); thus, the maximum transfer is limited.

5.1. Most Noticeable Platforms

251

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_ds_port.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_dsi.png?id=book%3Aiot-open2nded

Figure 168: Raspberry 4 LAN/USB ports view

Raspberry Pi Edge Class Devices Hardware Review

The Raspberry Pi Pico is the MCU development board that uses the chip RP2040, designed
by Raspberry Pi in 2019.

Hardware
It is intended as a low-cost, low-power device with big computational possibilities and
connectivity features. This device is intended to work with constrained power sources,
mainly battery-powered. The MCU integrates all features, including 6 banks of RAM, an
interrupt controller, DMA, timers, oscillators, I/O, voltage regulator and ROM in a single
enclosure.
A compact, 7x7mm chip exposes 26 GPIOs and is one of the most affordable MCUs,
estimated at 4 USD/piece only.

Currently, there are 2 types of development boards available: Raspberry Pi Pico and
Raspberry Pico W. The last one provides wireless connectivity. It is also possible to have
just MCUs (RP2040) as chips to be soldered; thus, third-party development boards are
available in the market. A genuine RPi Pico W development board is present in the figure
169.
With a built-in voltage regulator, the input voltage range is wide and starts from 1.8V up
to 5.5V.

5. IoT Hardware Overview

252

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20231031_184333.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 169: Rapsberry Pi Pico W development board

CPU
The CPU is an ARM Cortex-M0+ (double core) running up to 133 MHz (scalable). It
supports DMA. There is no FPU, however. A Nested Vector Interrupt Controller is also
present, along with a 24-bit timer. CPU and NIC can be put into the very low power mode.

Memory
RPI Picos have 264kB of internal RAM (SRAM) and 2MB of built-in QSPI flash with the
capability for an extension with external one up to 16MB. RAM uses DMA to perform CPU-
less transfers.
There is a 16kB ROM that contains bootloaders, USB mass storage UF2 support and utility
libraries such as FPU implementation.

Networking
Only the Pico W series includes a built-in radio that is 802.11n (2.4 GHz WiFi) and
Bluetooth 5.2.
IoT-specific protocols are supported only with external modules.

5.1. Most Noticeable Platforms

253

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/raspberrypi/rpipicow.jpg?id=book%3Aiot-open2nded

Peripherals
The Pico MCU includes a rich set of peripheral interfaces:

▪ 26 multipurpose GPIO inputs/outputs,
▪ 2xUART,
▪ 2xSPI,
▪ 2xI2C,
▪ 15 PWM channels,
▪ 4xADC 12-bit (500ksps) converters where only 3 are usable, with a temperature

sensor (for compensation),
▪ 8 programmable state machines,
▪ USB 1.1 controller (PHY) with HOST and DEV.

5. IoT Hardware Overview

254

5.2. Sensors and Sensing

A sensor is an element that can turn a physical outer stimulus into an output signal, which
can then be used for further analysis, management, or making decisions (figure 170).
People also use sensors like eyes, ears and skin to gain information about the outer world
and act according to their aims and needs. Sensors can be divided into many categories
according to the measured parameter of the environment.

Figure 170: Environment sensing data flow

Usually, every natural phenomenon – temperature, weight, speed, etc. – needs specially
customised sensors that can change phenomena into electric signals, usually the voltage,
that microprocessors or other devices could use. Sensors can be divided into many
groups according to the physical nature of their operations – touch, light, an electrical
characteristic, proximity and distance, angle, environment and other sensors.

5.2.1. Touch Sensors

Button
A pushbutton is an electromechanical sensor that connects or disconnects two points
in a circuit when force is applied. The button output discrete value is either HIGH or LOW
(figure 171).

5.2. Sensors and Sensing

255

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sensor2.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 171: Pushbutton

A microswitch, also called a miniature snap-action switch, is an electromechanical
sensor that requires very little physical force and uses a tipping-point mechanism. The
microswitch has three pins, two of which are connected by default. When the force is
applied, the first connection breaks and one of the pins is connected to the third pin
(figure 172).

Figure 172: Microswitch

The most common use of a pushbutton is as an input device. Both force solutions can
be used as simple object detectors or end switches in industrial devices. The button can
be connected to any available digital pin configured as input or input with a pull-up. In
the configuration presented in figure 173, a pull-up resistor is connected externally, so
enabling it in the microcontroller is unnecessary.

Figure 173: Schematics of Arduino Uno and a push button

An example code:

int buttonPin = 2; //Initialization of a push button pin number
int buttonState = 0; //A variable for reading the push button status

void setup() {
Serial.begin(9600); //Begin serial communication
pinMode(buttonPin, INPUT); //Initialize the push button pin as an input

}

void loop() {
//Read the state of the pin where a button is connected
//it is LOW if a button is pressed, HIGH otherwise
//the buttonState variable holds the compliment state of the buttonPin
buttonState = !digitalRead(buttonPin);
//Check if the push button is pressed. If it is, the buttonState variable is HIGH
if (buttonState == HIGH) {

//Print out text in the console
Serial.println("The button state variable is HIGH - it is pressed.");

5. IoT Hardware Overview

256

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/push_button_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/micro_switch_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_button.png?id=book%3Aiot-open2nded

} else {
Serial.println("The button state variable is LOW - it is not pressed.");

}
delay(10); //Delay in between reads for stability

}

Force Sensor
A force sensor predictably changes resistance depending on the applied force to its
surface. Force-sensing resistors are manufactured in different shapes and sizes, and
they can measure not only direct force but also tension, compression, torsion and other
mechanical forces. Because the force sensor changes its resistance linearly, it should
be connected to the analogue input. Connecting another resistor to form the voltage
divider is also required, as shown in the figures 174 and 175. The internal ADC of the
microcontroller measures the voltage.
Force sensors are used as control buttons, object presence detectors, or to determine
weight in electronic scales.

Figure 174: Force sensitive resistor (FSR)

Figure 175: The voltage is measured by applying and measuring constant voltage to the sensor

An example code:

//Force Sensitive Resistor (FSR) is connected to the analogue 0 pin
int fsrPin = A0;
//The analog reading from the FSR resistor divider
int fsrReading;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the FSR analogue pin as an input
pinMode(fsrPin, INPUT);

}

void loop(void) {
//Read the resistance value of the FSR
fsrReading = analogRead(fsrPin);

5.2. Sensors and Sensing

257

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/preasure_sensor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_fsr.png?id=book%3Aiot-open2nded

//Print
Serial.print("Analog reading = ");
Serial.println(fsrReading);
delay(10);

}

Capacitive Sensor
Capacitive sensors are a range of sensors that use capacitance to measure changes in
the surrounding environment. A capacitive sensor is a capacitor charged with a certain
amount of current until the threshold voltage is reached. A human finger, liquids or other
conductive or dielectric materials that touch the sensor can influence the sensor's charge
time and voltage level. Measuring charge time and voltage level gives information about
changes in the environment. Ready-to-use sensors include an electronic element that
performs measurements and returns digital information at the output so that they can be
connected directly to a digital input pin.
Capacitive sensors are input devices and can measure proximity, humidity, fluid level
and other physical parameters or serve as an input for electronic device control. Sample
sensor and its connection are presented in the figures 176 and 177.

Figure 176: Touch button module

Figure 177: Arduino and capacitive sensor schematics

//Capacitive sensor is connected to the digital 2 pin
int touchPin = 2;

//The variable that stores digital value read from the sensor
boolean touchReading = LOW;
//The variable that stores the previous state of the sensor
boolean lastState = LOW;

void setup() {
//Begin serial communication
Serial.begin(9600);
//Initialize the capacitive sensor analogue pin as an input
pinMode(touchPin, INPUT);

5. IoT Hardware Overview

258

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/touch_senor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_capacitive.png?id=book%3Aiot-open2nded

}

void loop() {
//Read the digital value of the capacitive sensor
touchReading = digitalRead(touchPin);
//If the new touch has appeared
if (currentState == HIGH && lastState == LOW){

Serial.println("Sensor is pressed");
delay(10); //short delay

}
//Save the previous state to see relative changes
lastState = currentState;

}

Most of the buttons and switches are of simple construction, so
they are subject to a debouncing, as a single press or release
of the switch may trigger many changes in the signal (not just
a single swap from LOW to HIGH or opposite). This is because
applying force and moving connectors is imperfect and may
involve vibration and twinkling. We discuss this problem in the
programming patterns chapter.

5.2.2. Light Sensors

Photoresistor
A photoresistor is a sensor that perceives light waves from the environment. The
resistance of the photoresistor is changing depending on the intensity of light. The higher
the intensity of the light, the lower the sensor's resistance. A light level is determined
by applying a constant voltage through the resistor to the sensor, forming a voltage
divider, and measuring the resulting voltage. Photoresistors are cheap, but the resistance
is influenced by temperature and changes slowly, so they are used in applications where
speed and accuracy are not crucial.
Photoresistors are often utilised in energy-effective street lighting control.
A symbol, sample photoresistor, and connection circuit are present in figures 178, 179
and 180.

Figure 178: A photoresistor symbol

5.2. Sensors and Sensing

259

https://www.roboticlab.eu/homelab/en/iot-open/introductiontoembeddedprogramming2/cppfundamentals/programmingpatterns
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/photoresistor.png?id=book%3Aiot-open2nded

Figure 179: A photoresistor

Figure 180: Arduino and photoresistor sensor schematics

As shown in the figure 180, the photoresistor connected gives a lower voltage level while
the light is more intense. Results can be read with the following example code. The value
will be just a number not expressed in any units, e.g. Lux. To express light intensity in
Luxes, additional calculations must be encoded in the program.

//Define an analog A0 pin for photoresistor
int photoresistorPin = A0;
//The analogue reading from the photoresistor
int photoresistorReading;

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialise the analogue pin of a photoresistor as an input
pinMode(photoresistorPin, INPUT);

}

void loop()
{

//Read the value of the photoresistor
photoresistorReading = analogRead(photoresistorPin);
//Print out the value of the photoresistor reading to the serial monitor
Serial.println(photoresistorReading);
delay(10); //Short delay

}

Photodiode
A photodiode is a sensor that converts light energy into electrical current. A current
in the sensor is generated by exposing a p-n junction of a semiconductor to the light.
Information about the light intensity can be determined by measuring a voltage level.
Photodiodes react to changes in light intensity very quickly, so they can be used as
receivers of light-based data transmission systems (e.g. fibre data communication). Solar
cells are just large photodiodes. A symbol, sample photodiode and connection circuit are
present in figures 181, 182 and 183.
Photodiodes are used as precise light-level sensors, receivers for remote control,
electrical isolators (optocouplers), and proximity detectors.

5. IoT Hardware Overview

260

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/photoresistor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_photoresistor.png?id=book%3Aiot-open2nded

Figure 181: A photodiode symbol

Figure 182: A photodiode

Figure 183: Arduino and photodiode sensor schematics

Although the photodiode can generate current, the schematic in figure 183 shows its
connection similar to the photoresistor in the previous example. In such a circuit, the
photodiode changes its current according to a change in light intensity, resulting in
the voltage change at the microcontroller's analogue input. As in the example for a
photoresistor, the higher the light intensity, the lower the voltage. An example code:

//Define an analog A0 pin for photodiode
int photodiodePin = A0;
//The analogue reading from the photodiode
int photodiodeReading;

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialise the analogue pin of a photodiode as an input
pinMode(photodiodePin, INPUT);

}

void loop()
{

//Read the value of the photodiode
photodiodeReading = analogRead(photodiodePin);
//Print out the value of the photodiode reading to the serial monitor
Serial.println(photodiodeReading);
delay(10); //Short delay

}

Phototransistor
The phototransistor is a typical bipolar transistor with a transparent enclosure that
exposes the base-emitter junction to light. In a bipolar transistor, the current that passes
through the collector and emitter depends on the base current. In the phototransistor,

5.2. Sensors and Sensing

261

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/photodiode_symbol.svg_.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/photo_diode.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_photodiode.png?id=book%3Aiot-open2nded

the collector-emitter current is controlled with light. A phototransistor is slower than a
photodiode but can conduct more current; additionally, it amplifies the incoming signal.
In specific conditions, if the light is completely off or intense enough to make the output
current maximal, a phototransistor can be considered a light-controlled electronic switch
(e.g. in optocouplers, which are usually connected to digital inputs of the microcontroller
and provide physical separation between devices).
Phototransistors are used as optical switches, proximity sensors and electrical isolators.
A symbol, sample phototransistor device, and circuit are present in figures 184, 185 and
186.

Figure 184: A phototransistor symbol

Figure 185: An phototransistor

Figure 186: Arduino and phototransistor schematics

An example code:

//Define an analog A1 pin for phototransistor
int phototransistorPin = A1;
//The analogue reading from the phototransistor
int phototransistorReading;

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialise the analogue pin of a phototransistor as an input
pinMode(phototransistorPin, INPUT);

}

void loop()
{

//Read the value of the phototransistor
phototransistorReading = analogRead(phototransistorPin);
//Print out the value of the phototransistor reading to the serial monitor

5. IoT Hardware Overview

262

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/phototrans.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/phototransitor.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_phototransistor.png?id=book%3Aiot-open2nded

Serial.println(phototransistorReading);
delay(10); //short delay

}

5.2.3. Optical Sensors

Optocoupler
An optocoupler is a device that combines light-emitting and receiving devices in one
package. Mainly, it combines the infrared light-emitting diode (LED) and a
phototransistor.
There are three main types of optocouplers:

▪ an optocoupler of a closed pair configuration is enclosed in the dark resin and is
used to transfer signals using light. This type of optocoupler is not a sensor itself but
is used for ensuring electrical isolation between two circuits;

▪ a slotted optocoupler has an open space between the light source and the sensor;
external objects can obstruct light and thus can influence the sensor signal. It can
be used to detect the presence of flat objects, measure rotation speed, vibrations or
serve as a bounce-free switch;

▪ a reflective pair configuration, the light signal is perceived as a reflection from
the object's surface. This configuration is used for proximity detection, surface colour
detection and tachometer.

A symbol, sample optocoupler and its connection to the microcontroller are present in
figures 187, 188 and 189.

Figure 187: An optocoupler symbol

Figure 188: ELITR9909 reflective optocoupler sensor

5.2. Sensors and Sensing

263

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/optocoupler.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/elitr9909_c.jpg?id=book%3Aiot-open2nded

Figure 189: Arduino Uno and optocoupler schematics

An example code:

int optoPin = A0; //Initialize an analogue A0 pin for optocoupler
int optoReading; //The analogue value reading from the optocoupler

int objecttreshold = 1000; //Object threshold definition
int whitetreshold = 150; //White colour threshold definition

void setup ()
{

//Begin serial communication
Serial.begin(9600);
//Initialise the analogue pin of the optocoupler as an input
pinMode(optoPin, INPUT);

}

void loop ()
{

optoReading = analogRead(optoPin); //Read the value of the optocoupler
Serial.print ("The reading of the optocoupler sensor is: ");
Serial.println(optoReading);

//When the reading value is lower than the object threshold
if (optoReading < objecttreshold) {

Serial.println ("There is an object in front of the sensor!");
//When the reading value is lower than the white threshold
if (optoReading < white threshold) {

Serial.println ("Object is in white colour!");
} else { //When the reading value is higher than the white threshold

Serial.println ("Object is in dark colour!");
}

}
else { //When the reading value is higher than the object threshold

Serial.println ("There is no object in front of the sensor!");
}
delay(500); //Short delay

}

Colour Sensor
This type of sensor gives information about the colour of the light illuminating the sensor
surface. Because computers often use RGB (red, green, blue) colour schemes, the sensor
returns three values representing the intensity of three components. Colour sensors
usually contain white LEDs to illuminate the surface, which colour should be distinguished
by them. The colour sensor uses an SPI or TWI interface to send readings. Some models
of colour sensors include an additional gesture detector which recognises simple gestures
(up, down, left, right).
The sample device is present in figure 190 and the connection circuit in figure 191.

5. IoT Hardware Overview

264

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_optocoupler.png?id=book%3Aiot-open2nded

Figure 190: TCS34725 RGB colour sensor module

Figure 191: Connection of the TCS34725 and microcontroller

#include <Wire.h>
#include "Adafruit_TCS34725.h"

// Example code for the TCS34725 library by Adafruit

// Sensor class
Adafruit_TCS34725 rgb_sensor = Adafruit_TCS34725();

void setup(void) {
Serial.begin(9600);
Wire.begin(5,4); //SCL SDA
pinMode(21, OUTPUT); //Pin 21 controls LED
digitalWrite(21,LOW); //Turn off onboard LED
if (rgb_sensor.begin()) { //Initialise RGB sensor

Serial.println("RGB sensor present");
} else {

Serial.println("No TCS34725 found");
while (1);

}
}

void loop(void) {
uint16_t r, g, b, unfiltered, lux;

rgb_sensor.getRawData(&r, &g, &b, &unfiltered);
//read RGB and unfiltered light intensity

lux = rgb_sensor.calculateLux(r, g, b);
//calculate illuminance in Lux

Serial.print("Lux: "); //print calculated Lux value
Serial.print(lux, DEC);
Serial.print(" - ");

5.2. Sensors and Sensing

265

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114221_-_kopia.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/tcs34725_schematic.png?id=book%3Aiot-open2nded

Serial.print("R: "); //print red component value
Serial.print(r, DEC);
Serial.print(" ");

Serial.print("G: "); //print green component value
Serial.print(g, DEC);
Serial.print(" ");

Serial.print("B: "); //print blue component value
Serial.print(b, DEC);
Serial.print(" ");

Serial.print("C: "); //print unfiltered sensor value
Serial.print(unfiltered, DEC);
Serial.println(" ");

delay(1000);
}

5.2.4. Electrical Characteristic Sensors

Electrical characteristic sensors measure the voltage and amperage of the electric
current. When the voltage and current sensors are used concurrently, the consumed
power of the device can be determined. Electrical characteristic sensors can determine
whether the device's circuit is working correctly. Different sensor circuits must be used to
measure direct current (DC) and alternating current (AC). If the parameters of the mains
are to be measured, it must be done using transformers for safety reasons.

Voltage Sensor
A voltage sensor is a device or circuit for voltage measurement. A simple DC (direct
current) voltage sensor consists of a voltage divider circuit with an optional amplifier
for a tiny voltage measure. For measuring the AC (alternating current), the input is
connected to the rectifier diode or bridge to rectify AC to DC and a capacitor to flatten the
voltage. The resulting voltage can be measured with an analogue digital converter of the
microcontroller. For safety, while measuring the mains voltage, an optoelectrical isolator
should be added at the output, or a transformer should lower the voltage at the input.
A voltage sensor can detect a power failure and measure if the voltage is in the range
required. IoT applications include monitoring appliances, power lines, and power supplies.
Sample voltage sensor module is present in figure 192 and schematic connection to the
Arduino Uno in figure 193.

5. IoT Hardware Overview

266

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 192: Voltage sensor module 0–25 V

Figure 193: Arduino and voltage sensor schematics

The example code:

//Define an analogue A1 pin for voltage sensor
int voltagePin = A1;
//The result of the analogue reading from the voltage sensor
int voltageReading;

float vout = 0.0;
float vin = 0.0;
float R1 = 30000.0; // 30 kΩ resistor
float R2 = 7500.0; // 7.5 kΩ resistor

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialize the analogue pin as an input
pinMode(voltagePin, INPUT);

}

void loop()
{

//Read the value of the voltage sensor
voltageReading = analogRead(voltagePin);
vout = (voltageReading * 5.0) / 1024.0;
vin = vout / (R2/(R1+R2));

Serial.print("Voltage is: ");
//Print out the value of the voltage to the serial monitor
Serial.println(vin);
delay(10); //Short delay

}

5.2. Sensors and Sensing

267

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/voltage_senor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/voltage_sen_sch_hd.jpg?id=book%3Aiot-open2nded

Current Sensor
A current sensor is a device or a circuit for current measurement. A simple DC sensor
consists of a high-power resistor with low resistance. The current value is obtained by
measuring the voltage on the resistor and applying a formula derived from Ohm's law.
Other non-invasive measurement methods involve hall effect sensors for DC and AC and
inductive coils (current transformer) for AC.
Current sensors determine the power consumption and detect whether the device is
turned on or shorted.
Sample current sensor modules are present in figures 194 and 195, and schematic
connection to the Arduino Uno in figure 196

Figure 194: Current transformer module for AC

Figure 195: Analogue current meter module 0–50 A

Figure 196: Arduino and current sensor module schematics

5. IoT Hardware Overview

268

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114306_copy.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/current_sen_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_current.png?id=book%3Aiot-open2nded

The example code:

//Define an analogue A0 pin for current sensor
const int currentPin = A0;
//Scale factor of the sensor use 100 for 20 A Module and 66 for 30 A Module
int mVperAmp = 185;
int currentReading;
int ACSoffset = 2500;
double voltage;
double current;

void setup(){
Serial.begin(9600);

}

void loop(){

currentReading = analogRead(currentPin);
Voltage = (currentReading / 1024.0) * 5000; //Gets you mV
Current = ((Voltage - ACSoffset) / mVperAmp); //Calculating current value

Serial.print("Raw Value = "); //Shows pre-scaled value
Serial.print(currentReading);
Serial.print("\t Current = "); //Shows the voltage measured
//The '3' after current allows to display 3 digits after the decimal point
Serial.println(Current,3);
delay(1000); //Short delay

5.2.5. Proximity and Distance Sensors

Infrared Sensor
An infrared (IR) proximity sensor detects objects and measures distance without physical
contact. IR sensor consists of an infrared emitter, a receiving sensor or array of sensors
and a signal processing logic. The output of a sensor differs depending on the type –
simple proximity detection sensor outputs HIGH or LOW level when an object is in its
sensing range, but sensors which can measure distance output an analogue signal or use
some communication protocol, like I2C to send sensor measuring results. IR sensors are
used in robotics to detect obstacles located a few millimetres to several meters from the
sensor and in mobile phones to help detect accidental screen touching.\\Sample IR sensor
device is present in figure 197 and its connection to the microcontroller in figure 198.

5.2. Sensors and Sensing

269

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 197: Distance Sensor GP2Y0A21YK0F

Figure 198: Arduino and IR proximity sensor circuit

An example code:

int irPin = A0; //Define an analogue A0 pin for IR sensor
int irReading; //The result of an analogue reading from the IR sensor

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialize the analogue pin of an IR sensor as an input
pinMode(irPin, INPUT);

}

void loop()
{

//Read the value of the IR sensor
irReading = analogRead(irPin);
//Print out the value of the IR sensor reading to the serial monitor
Serial.println(irReading);
delay(10); //Short delay

}

Ultrasonic Sensor
The ultrasonic sensor measures the distance to objects by emitting a short ultrasound
sound pulse and measuring its returning time. The sensor consists of an ultrasonic
emitter and receiver; sometimes, they are combined into a single device for emitting and
receiving. Ultrasonic sensors can measure greater distances and cost less than infrared
sensors but are more imprecise and interfere with each other's measurements if more
than one is used. Simple sensors have a trigger pin and an echo pin; when the trigger
pin is set high for a small amount of time, ultrasound is emitted, and on the echo pin,
response time is measured. Ultrasonic sensors are used in car parking sensors and robots
for proximity detection. A sample ultrasonic sensor is present in figure 199 and a circuit

5. IoT Hardware Overview

270

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sharp_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_ir_prox.png?id=book%3Aiot-open2nded

in figure 200.
Examples of IoT applications are robotic obstacle detection and room layout scanning.

Figure 199: Ultrasonic proximity sensor HC-SR04

Figure 200: Arduino and ultrasound proximity sensor circuit

An example code:

int trigPin = 2; //Define a trigger pin D2
int echoPin = 4; //Define an echo pin D4

void setup()
{

Serial.begin(9600); //Begin serial communication
pinMode(trigPin, OUTPUT); //Set the trigPin as an Output
pinMode(echoPin, INPUT); //Set the echoPin as an Input

}

void loop()
{

digitalWrite(trigPin, LOW); //Clear the trigPin
delayMicroseconds(2);

//Set the trigPin on HIGH state for 10 μs
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);

//Read the echoPin, return the sound wave travel time in microseconds
duration = pulseIn(echoPin, HIGH);
//Calculating the distance
distance = duration*0.034/2;

//Printing the distance on the Serial Monitor
Serial.print("Distance: ");
Serial.println(distance);

}

5.2. Sensors and Sensing

271

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/ultrasound_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_ultrasound_proximity.png?id=book%3Aiot-open2nded

Motion Detector
The motion detector is a sensor that detects moving objects, primarily people. Motion
detectors use different technologies, like passive infrared sensors, microwaves and the
Doppler effect, video cameras, and ultrasonic and IR sensors. Passive IR (PIR) sensors
are the simplest motion detectors that sense people by detecting changes in IR radiation
emitted through the skin. When the motion is detected, the output of a motion sensor is
a digital HIGH/LOW signal.
Motion sensors are used in security alarm systems, automated lights and door control.
As an example in IoT, the PIR motion sensor can detect motion in security systems in a
house or any building.\\Sample PIR sensor is present in 201 and connection schematic in
figure 202.

Figure 201: PIR motion sensor

Figure 202: Arduino and PIR motion sensor circuit

An example code:

//Passive Infrared (PIR) sensor output is connected to the digital 2 pin
int pirPin = 2;
//The digital reading from the PIR output
int pirReading;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the PIR digital pin as an input
pinMode(pirPin, INPUT);

}

void loop(void) {
//Read the digital value of the PIR motion sensor
pirReading = digitalRead(pirPin);
//Print out
Serial.print("Digital reading = ");
Serial.println(pirReading);

5. IoT Hardware Overview

272

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/movemtn_sensor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_pir_motion_detector.png?id=book%3Aiot-open2nded

if(pirReading == HIGH) { //Motion was detected
Serial.println("Motion Detected");

}

delay(10);
}

Fluid Level Sensor
A level sensor detects the level of fluid or fluidised solid. Level sensors can be divided
into two groups:

▪ continuous level sensors that can detect the exact position of the fluid. Proximity
sensors, like ultrasonic or infrared, are usually used for level detection. Capacitive
sensors can also be used by recording the changing capacitance value depending on
the fluid level. The output can be either analogue or digital value;

▪ point-level sensors can detect whether a fluid is above or below the sensor. A
membrane with air pressure or changes in conductivity or capacitance can be used
for level detection as a floating or mechanical switch. The output is usually a digital
value that indicates HIGH or LOW value.

Fluid level sensors can be used for smart waste management, measuring tank levels,
diesel fuel gauging, liquid assets inventory, chemical manufacturing, high or low-level
alarms, and irrigation control.
Sample level sensor is present in figure 203 and connection schematic in figure 204.

Figure 203: Liquid level sensor

Figure 204: Arduino Uno and liquid level sensor schematics

An example code:

int levelPin = 6; //Liquid level sensor output is connected to the digital 6 pin
int levelReading; //Stores level sensor detection reading

void setup(void) {
Serial.begin(9600); //Begin serial communication
pinMode(levelPin, INPUT); //Initialize the level sensor pin as an input

}

5.2. Sensors and Sensing

273

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/level_sensor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/levle_sen_sch_hd.jpg?id=book%3Aiot-open2nded

void loop(void) {
levelReading = digitalRead(levelPin); //Read the digital value of the level sensor
Serial.print("Level sensor value: "); //Print out
Serial.println(levelReading);
delay(10); //Short delay

}

5.2.6. Angle & Orientation Sensors

Potentiometer
A potentiometer is a type of resistor, the resistance of which can be adjusted using a
mechanical lever. The device consists of three terminals. The resistor between the first
and the third terminal has a fixed value, but the second terminal is connected to the lever.
Whenever the lever is turned, a slider of the resistor is moved; it changes the resistance
between the second terminal and side terminals. Variable resistance causes the change
of the voltage, which can be measured to determine the position of the lever. Thus, the
potentiometer output is an analogue value.
Potentiometers are commonly used as a control level, for example, a volume level for the
sound and joystick position. They can also be used to determine the angle in feedback
loops with motors, such as servo motors. The potentiometer symbol is present in figure
205, a device in figure 206 and a connection to the Arduino board in figure 207.

Figure 205: A symbol of a potentiometer

Figure 206: A potentiometer

5. IoT Hardware Overview

274

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/potentiometer_symbol_europe.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/potentiometer_c.jpg?id=book%3Aiot-open2nded

Figure 207: Arduino and potentiometer circuit

An example code:

//Potentiometer sensor output is connected to the analogue A0 pin
int potentioPin = A0;
//The analogue reading from the potentiometer output
int potentioReading;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the potentiometer analogue pin as an input
pinMode(potentioPin, INPUT);

}

void loop(void) {
//Read the analogue value of the potentiometer sensor
potentioReading = analogRead(potentioPin);
Serial.print("Potentiometer reading = "); //Print out
Serial.println(potentioReading);
delay(10);

}

The Inertial Measurement Unit (IMU)
An IMU is an electronic device consisting of an accelerometer, gyroscope and sometimes
a magnetometer. The combination of these sensors returns the object's orientation in 3D
space. IMU sensors can present the object's current position and movement, expressed
with at most six values called the DOF (Degrees Of Freedom). Three values represent the
linear movements that the accelerometer can measure:

▪ moving forward/backwards,
▪ moving left/right,
▪ moving up/down.

Another three values present the rotation in three axes that can be measured by
gyroscope:

▪ roll side to side,
▪ pitch forward and backwards,
▪ yaw left and right.

5.2. Sensors and Sensing

275

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_potentiometer.png?id=book%3Aiot-open2nded

A gyroscope is a sensor that measures the angular velocity. The sensor is made with
microelectromechanical system (MEMS) technology and is integrated into the chip. The
sensor output can be analogue or digital, using I2C or SPI interface. Gyroscope microchips
can vary in the number of axes they can measure. The available number of axes is 1,
2 or 3 axes in the gyroscope. A gyroscope is commonly used with an accelerometer to
precisely determine the device's orientation, position and velocity. Gyroscope sensors are
used in aviation, navigation and motion control.

An accelerometer measures the acceleration of the object. The sensor uses
microelectromechanical system (MEMS) technology, where capacitive plates are
attached to springs. When acceleration force is applied to the plates, the capacitance
is changed; thus, it can be measured. Accelerometers can have 1 to 3 axes. The
3-axis accelerometer can detect the device's orientation, shake, tap, double tap, fall,
tilt, motion, positioning, shock or vibration. Outputs of the sensor are usually digital
interfaces like I2C or SPI. The accelerometer is often used with a gyroscope to precisely
measure the object's movement and orientation in space.
Accelerometers measure objects' vibrations, including cars, industrial devices, and
buildings, and detect volcanic activity. IoT applications can also be used for accurate
motion detection for medical and home appliances, portable navigation devices,
augmented reality, smartphones and tablets.

A magnetometer is a sensor that can measure the device's orientation to the Earth's
magnetic field. A magnetometer is used as a compass in outdoor navigation for mobile
devices, robots, and quadcopters.

Different elements allow measuring linear accelerations, angular accelerations, and
magnetic fields in three axes. There exist elements that combine two (called 6-axis
or 6-DOF) or all (9-axis, 9-DOF) measurement units. Popular integrated circuits are
MPU6050 (3-axes gyro + 3-axes accelerometer, figure 208), MPU9250 (3-axes gyro +
3-axes accelerometer + 3-axes compass, figure 209), and BNO055 (3-axes gyro + 3-axes
accelerometer + 3-axes magnetometer, figure 210). All of them can be programmed in
an Arduino environment using dedicated libraries.
The latter automatically calculates additional information like gravity vector and absolute
orientation expressed as an Euler vector or a quaternion. The sample connection circuit
for the BNO055 sensor is present in figure 211.

Figure 208: IMU MPU6050 module

5. IoT Hardware Overview

276

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114148_-_kopia.jpg?id=book%3Aiot-open2nded

Figure 209: IMU MPU9250 module

Figure 210: IMU BNO055 module

Figure 211: Arduino Uno and IMU BNO055 module schematics

The example code:

//Library for I2C communication
#include <Wire.h>
//Downloaded from https://github.com/adafruit/Adafruit_Sensor
#include <Adafruit_Sensor.h>
//Downloaded from https://github.com/adafruit/Adafruit_BNO055
#include <Adafruit_BNO055.h>
#include <utility/imumaths.h>

5.2. Sensors and Sensing

277

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114235_-_kopia.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/imu_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/imu_sch_hd.jpg?id=book%3Aiot-open2nded

Adafruit_BNO055 bno = Adafruit_BNO055(55);
void setup(void)
{

bno.setExtCrystalUse(true);
}
void loop(void)
{

//Read sensor data
sensors_event_t event;
bno.getEvent(&event);
//Print X, Y And Z orientation
Serial.print("X: ");
Serial.print(event.orientation.x, 4);
Serial.print("\tY: ");
Serial.print(event.orientation.y, 4);
Serial.print("\tZ: ");
Serial.print(event.orientation.z, 4);
Serial.println("");
delay(100);

}

Most MEMS devices present built-in inaccuracy. For this
reason, gyros and accelerometers should be calibrated before
use to calculate their so-called offset, an average error they
present (in each axis separately). Later, this error is used to
calculate a correction factor applied during regular operation.
Sample MPU6050 library along with calibration code can be
found in the Github repository [141].

Similar problem is present in the case of the magnetometers:
the surrounding environment can impact readings; thus, they
require calibration that can be achieved by recording the
minimum and maximum values during rotation in every axis.
This process is common when using a drone in a new location.

5.2.7. Environment Sensors

Temperature Sensor
A temperature sensor is a device used to determine the temperature of the surrounding
environment. Most temperature sensors work on the principle that the material's
resistance changes depending on its temperature. The most common temperature
sensors are:

5. IoT Hardware Overview

278

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ thermocouple – consists of two junctions of dissimilar metals,
▪ thermistor – includes the temperature-dependent resistor,
▪ resistive temperature detector – is made of a pure metal coil.

The main difference between sensors is the measured temperature range, precision
and response time. Temperature sensor usually outputs the analogue value, but some
existing sensors have a digital interface [142]. The thermistor can have a positive (PTC)
or negative (NTC) thermal coefficient. For PTC, resistance rises with rising temperature,
while resistance decreases in higher temperatures for NTC. An analogue thermistor
must calculate the value read if the result should be presented in known units. Digital
temperature sensors usually express the result in Celsius degrees or other units.

Temperature sensors are most commonly used in environmental monitoring devices and
thermoelectric switches. In IoT applications, the sensor can be used for greenhouse
temperature monitoring, warehouse temperature monitoring to avoid freezing, fire
suppression systems and tracking the temperature of the soil, water and plants. The
sample temperature sensor is present in figure 212 and connection schematic in 213.

Figure 212: A thermistor

Figure 213: Arduino and thermistor circuit

An example code:

//Thermistor sensor output is connected to the analogue A0 pin
int thermoPin = 0;
//The analogue reading from the thermistor output
int thermoReading;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the thermistor analogue pin as an input
pinMode(thermoPin, INPUT);

}

void loop(void) {
//Read the analogue value of the thermistor sensor
thermoReading = analogRead(thermoPin);
Serial.print("Thermistor reading = "); //Print out
Serial.println(thermoReading);
delay(10);

}

5.2. Sensors and Sensing

279

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/thermistor.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_thermistor.png?id=book%3Aiot-open2nded

Digital Temperature Sensor
Digital temperature sensors automatically convert the temperature reading into some
known unit, e.g. Celsius, Fahrenheit or Kelvin Degrees. Digital thermometers use one of
the popular communication links. An example of a digital thermometer is DS18B20 by
Dallas Semiconductors (figures 214 and 215). It uses a 1-Wire communication protocol; a
sample schematic is present in the figure 216.

Figure 214: DS18B20 temperature sensor

Figure 215: DS18B20 temperature sensor, waterproof version

Figure 216: DS18B20 circuit (One Wire on pin 13)

#include <OneWire.h> //library for 1-Wire protocol
#include <DallasTemperature.h> //library for DS18B20 digital thermometer

const int SENSOR_PIN = 13; //DS18B20 pin

5. IoT Hardware Overview

280

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114533.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114703.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/ds18b20_one_wire_schematics.png?id=book%3Aiot-open2nded

OneWire oneWire(SENSOR_PIN); //oneWire class
DallasTemperature tempSensor(&oneWire);

//connect oneWire to DallasTemperature library

float tempCelsius; //temperature in Celsius degrees

void setup()

{
Serial.begin(9600); //initialize serial port
tempSensor.begin(); //initialize DS18B20

}

void loop()
{

tempSensor.requestTemperatures();
//command to read temperatures

tempCelsius = tempSensor.getTempCByIndex(0);
//read temperature (in Celsius)

Serial.print("Temp: ");
Serial.print(tempCelsius); //print the temperature
Serial.println(" C");

delay(1000);
}

Humidity Sensor
A humidity sensor (hygrometer) is a sensor that detects the amount of water or water
vapour in the environment. The most common principle of air humidity sensors is
the change of capacitance or resistance of materials that absorb moisture from the
atmosphere. Soil humidity sensors measure the resistance between the two electrodes.
Soluble salts and water amounts influence the resistance between electrodes in the
soil. The output of a humidity sensor is an analogue signal value or digital value sent
with some popular protocols [143]. A DHT11 (temperature+humidity) sensor is present in
figure 217 and its connection to the microcontroller in 218.
IoT applications include monitoring humidors, greenhouse humidity, agriculture, art
galleries and museum environments.

Figure 217: Temperature and humidity sensor module

Figure 218: Arduino Uno and humidity sensor schematics

5.2. Sensors and Sensing

281

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/humidity_sensor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_humidity.png?id=book%3Aiot-open2nded

An example code [144]:

#include <dht.h>

dht DHT;

#define DHT_PIN 7

void setup(){
Serial.begin(9600);

}

void loop()
{

int chk = DHT.read11(DHT_PIN);
Serial.print("Humidity = ");
Serial.println(DHT.humidity);
delay(1000);

}

Sound Sensor
A sound sensor is a sensor that detects vibrations in a gas, liquid or solid environment. At
first, the sound wave pressure makes mechanical vibrations, which transfer to changes
in capacitance, electromagnetic induction, light modulation or piezoelectric generation
to create an electric signal. The electrical signal is then amplified to the required output
levels. Sound sensors can record sound and detect noise and its level.
Sound sensors are used in drone detection, gunshot alert, seismic detection and vault
safety alarms.
Sample digital sound sensor is present in figure 219 and its application with Arduino in
figure 220.

Figure 219: Digital sound detector sensor module

Figure 220: Arduino Uno and sound sensor schematics

An example code:

//Sound sensor output is connected to the digital 7 pin
int soundPin = 7;
//Stores sound sensor detection readings
int soundReading = HIGH;

5. IoT Hardware Overview

282

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sound_sensor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_sound.png?id=book%3Aiot-open2nded

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the sound detector module pin as an input
pinMode(soundPin, INPUT);

}

void loop(void) {
//Read the digital value to determine whether the sound has been detected
soundReading = digitalRead(soundPin);
if (soundPin==LOW) { //When sound detector detected the sound

Serial.println("Sound detected!"); //Print out
} else { //When the sound is not detected

Serial.println("Sound not detected!"); //Print out
}
delay(10);

}

Chemical and Gas Sensor
Gas sensors are a group that can detect and measure the concentration of certain gasses
in the air. The working principle of electrochemical sensors is to absorb the gas and create
current from an electrochemical reaction. For process acceleration, a heating element
can be used. For each type of gas, different kind of sensor needs to be used. Multiple
types of gas sensors can also be combined in a single device. The single gas sensor
output is an analogue signal, but devices with various sensors have a digital interface.
The smoke or air pollution sensors usually use LED or laser that emits light and a detector
normally shaded from the light. If there are particles of smoke or polluted air inside the
sensor, the light is reflected by them, which can be observed by the detector.
Gas sensors are used for safety devices, air quality control, and manufacturing
equipment. IoT applications include air quality control management in smart buildings
and smart cities or toxic gas detection in sewers and underground mines.\\MQ-7 Carbon
Monoxide detector is present in figure 221 and its connection using analogue signal in
figure 222.

Figure 221: MQ-7 gas sensor

Figure 222: Arduino Uno and MQ2 gas sensor schematics

An example code:

int gasPin = A0; //Gas sensor output is connected to the analog A0 pin
int gasReading; //Stores gas sensor detection reading

5.2. Sensors and Sensing

283

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gas_senor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_gas.png?id=book%3Aiot-open2nded

void setup(void) {
Serial.begin(9600); //Begin serial communication
pinMode(gasPin, INPUT); //Initialize the gas detector pin as an input

}

void loop(void) {
gasReading = analogRead(gasPin); //Read the analog value of the gas sensor
Serial.print("Gas detector value: "); //Print out
Serial.println(gasReading);
delay(10); //Short delay

}

Smoke and Air Pollution Sensors
The smoke sensors usually emit LED light, and a detector is typically shaded from the
light. If there are particles of smoke present inside the sensor, the light is reflected by
them, which can be observed by the detector.
Smoke detectors are used in fire alarm systems.
The air pollution sensors usually use a laser directed onto the detector. Between the laser
and detector, the thin stream of air flows and pollution particles create shades on the
detector. Thus, the detector can distinguish the sizes of particles and count the number
of them.
Air pollution sensors are used in air purifiers and air quality measurement stations to
monitor current air conditions, mainly in cities. Because the air pollution sensor generates
more data, the serial connection is often used for reading measurement results. An
example of an air pollution sensor that can count particles of PM1.0, PM2.5, and PM10 is
PMS5003. PMS series sensors are controlled with a serial port and additional signalling
GPIOs with 3.3V logic, but they require 5V to power on an internal fan that ensures correct
airflow. A PMS5003 sensor is present in figures 223 and 224, and its connection in figure
225.

Figure 223: PMS5003 laser sensor for PM1.0, PM2.5 and PM10 - airduct fan side

5. IoT Hardware Overview

284

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20231003_084525.jpg?id=book%3Aiot-open2nded

Figure 224: PMS5003 laser sensor for PM1.0, PM2.5 and PM10 - connector side

Figure 225: PMS5003 connection circuit for ESP32

An example code that uses the PMS5003 sensor:

#include <HardwareSerial.h>
#include <Arduino.h>

// Define the serial port for the PMS5003 sensor
HardwareSerial pmsSerial(1);
#define SET_PIN 22;
#define RESET_PIN 4;
#define RXD_PIN 16; //to TXD of the sensor
#define TDX_PIN 17; //to RXD of the sensor

bool verifyChecksum(uint8_t *data, int len);

5.2. Sensors and Sensing

285

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20231003_084542.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/pms5003.png?id=book%3Aiot-open2nded

void setup() {
Serial.begin(9600);

pinMode(SET_PIN, OUTPUT); //controls sensor's low power mode
//(LOW) -> turns fan down

pinMode(RESET_PIN, OUTPUT); //controls sensor's reset (LOW)
digitalWrite(SET_PIN, HIGH); //enable both
digitalWrite(RESET_PIN, HIGH);

pmsSerial.begin(9600, SERIAL_8N1, RXD_PIN, TXD_PIN);
}

void loop() {
if (pmsSerial.available()) {

if (pmsSerial.peek() == 0x42) {
if (pmsSerial.available() >= 32) {

uint8_t buffer[32];
pmsSerial.readBytes(buffer, 32);

if (verifyChecksum(buffer, 30)) {
uint16_t pm25 = makeWord(buffer[10], buffer[11]);
uint16_t pm10 = makeWord(buffer[12], buffer[13]);

Serial.print("PM2.5: ");
Serial.print(pm25);
Serial.print(" ug/m3\t");
Serial.print("PM10: ");
Serial.print(pm10);
Serial.println(" ug/m3");

}
}

}
}

}

// Function to verify the checksum
bool verifyChecksum(uint8_t *data, int len) {

uint16_t checksum = 0;
for (int i = 0; i < len - 2; i++) {

checksum += data[i];
}
return (checksum == makeWord(data[len - 2], data[len - 1]));

}

Air Pressure Sensor
Air pressure sensors can measure the absolute pressure in the surrounding environment.
Some popular sensors use a piezo-resistive sensing element, which is then connected
to the amplifier and analogue digital converter. Frint-end uses the logic to interface the
microcontroller. Usually, barometric sensor readings depend on the temperature, so they
include the temperature sensor for temperature compensation of the pressure. Popular
examples of barometric sensors are BME280 and BMP280. Both include barometric
sensors and temperature sensors built in for compensation and possible measurement,
while BME280 also consists of a humidity sensor. Communication with these sensors is
done with an I2C or SPI bus.

5. IoT Hardware Overview

286

Barometric sensors are commonly used in home automation appliances for heating,
venting, air conditioning (HVAC), airflow measurement and weather stations. Because
air pressure varies with altitude, they are often used in altimeters. Sample connection
schematic is present in figure 227 and the module itself in figure 226.

Figure 226: BME 280 air pressure sensor board

Figure 227: BME 280 connection circuit (I2C)

Opposite to the BMP280 (pressure only sensor), BME280
module boards usually do not contain voltage regulators and
need to be powered with 3.3V (and so must be the signal
logic).

An example code of BME280 use is below:

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>

#define BME_ADDRESS 0x76

Adafruit_BME280 bme; // I2C

void setup() {
Serial.begin(9600);
bool status;
Wire.begin(5,4); //SDA=GPIO5, SCL=GPIO4)
status = bme.begin(BME_ADDRESS);
if (!status) {

Serial.println("Could not contact BME sensor");

5.2. Sensors and Sensing

287

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_115510_-_kopia.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/bme280_schematics.png?id=book%3Aiot-open2nded

while (1);
}
delay(1000);

}

void loop() {

Serial.print("Temperature=");
Serial.print(bme.readTemperature());
Serial.println("*C");

Serial.print("Air pressure=");
Serial.print(bme.readPressure() / 100.0F);
Serial.println("hPa");

Serial.print("Humidity=");
Serial.print(bme.readHumidity());
Serial.println("%rh");
Serial.println();

delay(1000);
}

5.2.8. Other Sensors

Hall sensor
A Hall effect sensor detects strong magnetic fields, their polarities and the relative
strength of the field. In the Hall effect sensors, a magnetic force influences current flow
through the semiconductor material and creates a measurable voltage on the sides of the
semiconductor. Sensors with analogue output can measure the strength of the magnetic
field, while digital sensors give HIGH or LOW output value, depending on the presence of
the magnetic field.

Hall effect sensors are used in magnetic encoders for speed and rotation measurements.
They can replace mechanical switches in keyboards and proximity switches because they
do not require contact, which ensures high reliability. An example application can be
sensing the position of rotary valves. Sample sensor is present in figure 228 and its
connection to the Arduino board in figure 229.

Figure 228: Hall-effect sensor module

5. IoT Hardware Overview

288

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/hall_sensor_c.jpg?id=book%3Aiot-open2nded

Figure 229: Arduino Uno and Hall sensor schematics

The example code:

int hallPin = A0; //Hall sensor output is connected to the analogue A0 pin
int hallReading; //Stores Hall sensor reading

void setup(void) {
Serial.begin(9600); //Begin serial communication
pinMode(hallPin, INPUT); //Initialize the Hall sensor pin as an input

}

void loop(void) {
hallReading = analogRead(hallPin); //Read the analogue value of the Hall sensor
Serial.print("Hall sensor value: "); //Print out
Serial.println(hallReading);
delay(10); //Short delay

}

Global Positioning System
A GPS receiver is a device that can receive information from a global navigation satellite
system and calculate its position on the Earth. A GPS receiver uses a constellation of
satellites and ground stations to compute position and time almost anywhere on Earth.
GPS receivers (figure 230) are used for navigation only in the outdoor area because they
need to receive signals from the satellites, which is complicated inside the buildings. The
GPS location's precision can vary depending on the number of visible satellites, weather
conditions, and current satellites' placement. The GPS receiver is often connected to a
microcontroller with a serial communication port and sends information according to the
NMEA scheme (figure 231).

A GPS receiver is used for device location tracking. Real applications might be, e.g., pet,
kid or personal belonging location tracking.

Figure 230: Grove GPS receiver module

5.2. Sensors and Sensing

289

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_hall2.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gps_c.jpg?id=book%3Aiot-open2nded

Figure 231: Arduino Uno and Grove GPS receiver schematics

The example code [145]:

#include <SoftwareSerial.h>
SoftwareSerial SoftSerial(2, 3);
unsigned char buffer[64]; //Buffer array for data receive over serial port
int count=0; //Counter for buffer array
void setup()
{

SoftSerial.begin(9600); //The SoftSerial baud rate
Serial.begin(9600); //The Serial port of Arduino baud rate.

}

void loop()
{

if (SoftSerial.available()) //If data is coming from software serial port
// ==> Data is coming from SoftSerial shield

{
while(SoftSerial.available()) //Reading data into char array
{

buffer[count++]=SoftSerial.read(); //Writing data into array
if(count == 64)break;

}
Serial.write(buffer,count); //If no data transmission ends,

//Write buffer to hardware serial port
clearBufferArray(); //Call clearBufferArray function to clear

//The stored data from the array
count = 0; //Set the counter of the while loop to zero

}
if (Serial.available()) //If data is available on hardware serial port

// ==> Data is coming from a PC or notebook
SoftSerial.write(Serial.read()); //Write it to the SoftSerial shield

}

void clearBufferArray() //Function to clear buffer array
{

for (int i=0; i<count;i++)
{

buffer[i]=NULL;
} //Clear all content of an array with NULL

}

5. IoT Hardware Overview

290

https://www.roboticlab.eu/homelab/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gps_sch.png

5.3. Actuators and Output Devices

An output device is a unit that changes an electrical signal coming from the
microcontroller into the physical parameter. It can generate or modify light, sound,
force, pressure and other physical values that influence other devices nearby or the
surrounding environment. Some output elements can be connected directly to the
microcontroller's pins, and some require higher voltage or current, so they need an
additional electronic circuit called the driver. Output devices can be divided into groups
based on the physical phenomenon they control. Popular output devices include LEDs,
displays, motors (actuators), speakers, and buzzers.

5.3.1. Optical Output Devices

Light-Emitting Diode
Unlike the other diodes, the light-emitting diode, also called LED, is a particular type that
emits light. LED has an entirely different body, which is made of transparent plastic that
protects the diode and lets it emit light (figure 232). Like the other diodes, LED conducts
the current in one way, so connecting it to the scheme is essential. There are two safe
ways to determine the direction of the diode:

▪ the cathode's side of the diode housing is chipped,
▪ the anode's leg is usually longer than the cathode's leg.

Figure 232: 5 mm Red LED

The LED is one of the most efficient light sources. Unlike incandescent bulbs, LED
transforms most of the power into light, not warmth; it is more durable, works for a more
extended period and can be manufactured in a smaller size.
The semiconductor material determines the LED colour. Diodes are usually silicon, and
LEDs are made from elements like gallium phosphate silicon carbide. Because the
semiconductors used are different, the voltage needed for the LED to shine is also
different.
When the LED is connected to the voltage and turned on, a considerable current starts
to flow through it, and it can damage the diode. That is why all LEDs have to be
connected in series with a current-limiting resistor (figure 233).

Current limiting resistors resistance is determined by three parameters:

▪ I_D – Current that can flow through the LED,

5.3. Actuators and Output Devices

291

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/led_c.jpg?id=book%3Aiot-open2nded

▪ U_D – Voltage that is needed to turn on the LED,
▪ U – Combined voltage for LED and resistor.

A short guide on calculating resistance for a diode is present below:

1. Find out the voltage needed for the diode to work U_D; you can find it in the diode
parameters table.

2. Find out the amperage needed for the LED to shine I_D; it can be found in the LEDs
datasheet, but if you can't find it, then 20 mA current is usually a correct and safe
choice.

3. Find out the combined voltage for the LED and resistor; usually, it is the feeding
voltage for the scheme.

4. Insert all the values into this equation: R = (U – U_D) / I_D.
5. You get the resistance for the resistor for the safe use of the LED.
6. Find a resistor with a nominal value that is the same or slightly bigger than the

calculated resistance.

Figure 233: Arduino Uno and LED control schematic

An example of the blinking LED code:

int ledPin = 8;//Defining the pin of the LED

void setup()
{

pinMode(ledPin,OUTPUT); //The LED pin is set to output
}

void loop()
{

//Set pin output signal to HIGH – LED is working
digitalWrite(ledPin,HIGH);
//Belay of 1000 ms
delay(1000);

//Set pin output signal to LOW – LED is not working
digitalWrite(ledPin,LOW);
//Delay of 1000 ms
delay(1000);

}

LED's brightness can be controlled easily with a PWM signal.
There exist LEDs with more than one light-emitting chip in one enclosure. They are made
as two-coloured or RGB elements with coloured controlled separately. There are two
internal configurations of such elements:

▪ common anode - anodes of all internal LEDs are connected (for sample MCU

5. IoT Hardware Overview

292

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_led.png?id=book%3Aiot-open2nded

connection, look in figure 234),
▪ common cathode - cathodes of all internal LEDs are connected (for sample MCU

connection, look in figure 235).

Figure 234: Connection of RGB common anode LED to Arduino

Figure 235: Connection of RGB common cathode LED to Arduino

Digital LED
Digital LED does not have anode or cathode connections available externally. They have
power supply pins and two pins for data transmission, one for input and a second for
output. The input accepts the digital signal from the microcontroller to set the brightness
of all three internal LEDs. Output connects the input of another LED to form a series of
LEDs. Digital LEDS are available as single elements but also as strips, rings or matrices
that a microcontroller with one pin can control. Every LED can shine in different colours,
creating interesting visual effects. An example of a popular digital LED is WS2812. A
particular protocol is used to transmit data. One LED requires 24 bits (1 byte for red, 1
for green, and 1 for blue) to set the colour. After receiving its data, the LED resends any
further byte to the following LEDs in the chain.
There are software libraries for Arduino and other platforms available to ease the
handling of digital LEDs, including advanced visual effects for stripes, matrices and other
shapes. Sample 8 LED WS2812 stripe is present in the figure 236 and its connection to
the MCU in 237.

5.3. Actuators and Output Devices

293

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/led_rgb_common_anode.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/led_rgb_common_cathode.png?id=book%3Aiot-open2nded

Figure 236: WS2812 8 smart LEDs stripe

Figure 237: MCU control of the digital LEDs

The example code that uses the popular Adafruir NeoPixel library:

#include <Adafruit_NeoPixel.h>

#define PIN 34 //Define the pin connected to the digital LED data input
#define NUMPIXELS 8 //Define the number of LEDs in the strip

Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);

void setColor(uint8_t red, uint8_t green, uint8_t blue) {
for (int i = 0; i < pixels.numPixels(); i++) {

pixels.setPixelColor(i, pixels.Color(red, green, blue));
}
pixels.show();

}

void setup() {
pixels.begin(); // Initialize the NeoPixel library

}

void loop() {
// Change the colour of the NeoPixel LED
setColor(255, 0, 0); // Red color (R, G, B)
delay(1000); // Delay to make the colour change visible (in milliseconds)
setColor(0, 255, 0); // Green color (R, G, B)
delay(1000); // Delay to make the colour change visible (in milliseconds)
setColor(0, 0, 255); // Blue color (R, G, B)
delay(1000); // Delay to make the colour change visible (in milliseconds)

}

5. IoT Hardware Overview

294

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114632_-_kopia.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/rgbledstrip8.png?id=book%3Aiot-open2nded

Displays
A display is a quick way to get feedback information from the device. There are many
display technologies. For IoT solutions, low-power, easy-to-use displays are used:

▪ 7-segment LED display,
▪ LED matrix display,
▪ liquid-crystal display (LCD),
▪ organic light-emitting diode display (OLED),
▪ electronic ink display (E-ink).

7-segment LED display
The seven-segment LED display is built with seven LEDs forming the shape, making
it possible to display symbols similar to digits and even some letters. Usually, the
eighth LED is added as the decimal point. 7-segment displays can have similar internal
connections as RGB LEDs, common anode or common cathode. If there is more than
one digit in the element, all the same segments are also connected. Such displays need
special controllers or the software part that displays separate digits in a sequence one by
one. To avoid unnecessary blinking or differences in the brightness of digits, software for
sequential displays is written using timers and interrupts. As for the RGB LEDs, 7-segment
displays need a separate resistor for every segment. Sample 2-digit 7-segment module
is present in the figure 238.

Figure 238: 7 segment LED display

LED matrix display
LED matrix displays offer the possibility of displaying not only digits and letters but also
pictograms and symbols. The most popular versions have 8 rows and 8 columns (figure
239), or 7 rows and 5 columns, but it is possible to find other configurations. As for the
7-segment displays, there are common anode and common cathode configurations. All
anodes in one row and all cathodes in one column are connected to a common anode. For
a common cathode, all cathodes in one row and all anodes in one column are connected.
Modern LED matrix displays have built-in controllers or are made with digital RGB LEDs,
making it possible to display pictures and videos.

Figure 239: 8×8 LED matrix

Liquid-Crystal Display (LCD)

5.3. Actuators and Output Devices

295

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_115323_-_kopia.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230927_145413_-_kopia.jpg?id=book%3Aiot-open2nded

Monochrome LCD uses modulating properties of liquid crystal to block the passing-
through light. Thus, when a voltage is applied to a pixel, it is dark. A display consists of
layers of electrodes, polarising filters, liquid crystals and a reflector or backlight. Liquid
crystals do not emit light directly but through reflection or backlight. Because of this
reason, they are more energy efficient. Small, monochrome LCDs are widely used to show
little numerical or textual information like temperature, time, device status, etc. The most
popular LCD device is an alphanumerical 2×16 characters display based on the HD44780
controller (figure 240).
There also exist graphic monochrome and colour TFT displays that use LCD technology.
LCD modules commonly come with an onboard control circuit and are controlled through
parallel or serial interfaces. Sample circuit for 2×16 display is present in figure 241.

Figure 240: Blue 16 × 2 LCD display

Figure 241: Arduino and LCD 2×16 connection schematics

The example code:

#include <LiquidCrystal.h> //include LCD library

//Define LCD pins
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
//Create an LCD object with predefined pins
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {
lcd.begin(16, 2); //Set up the LCD's number of columns and rows
lcd.print("hello, world!"); //Print a message to the LCD

}

void loop() {
//Set the cursor to column 0, line 1 – line 1 is the second row

5. IoT Hardware Overview

296

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/20230925_114745_-_kopia.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_lcd.png?id=book%3Aiot-open2nded

//Since counting begins with 0
lcd.setCursor(0, 1);
//Print the number of seconds since the reset
lcd.print(millis() / 1000);

}

Organic Light-Emitting Diode Display (OLED)
OLED display uses electroluminescent materials that emit light when the current passes
through these materials. The display consists of two electrodes and a layer of an organic
compound. OLED displays are thinner than LCDs, have higher contrast, and can be more
energy efficient depending on usage (figure 242). OLED displays are commonly used
in mobile devices like smartwatches and cell phones, replacing LCDs in other devices.
OLED displays come as monochrome or RGB colour devices. Small OLED display modules
usually have an onboard control circuit that uses digital interfaces like I2C (figure 243) or
SPI.

Figure 242: OLED I2C display

Figure 243: Arduino and OLED I2C schematics

//Add libraries to ensure the functioning of OLED
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

void setup() {
//Setting up initial OLED parameters
display.begin(SSD1306_SWITCHCAPVCC, 0x3C, false);
display.setTextSize(1); //Size of the text
display.setTextColor(WHITE); //Colour of the text – white

void loop() {

//Print out on display output sensor values
display.setCursor(0, 0);
display.clearDisplay();
display.print("Test of the OLED"); //Print out the text on the OLED
display.display();
delay(100);
display.clearDisplay();

}

Monochrome Electronic Ink Displays (E-Ink)

5.3. Actuators and Output Devices

297

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/oled_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_oled.png?id=book%3Aiot-open2nded

E-ink display uses charged particles to create a paper-like effect. The display comprises
transparent microcapsules filled with oppositely charged white and black particles
between electrodes. Charged particles change their location depending on the
orientation of the electric field; thus, individual pixels can be either black or white (figure
##REF:eink0##). The image does not need power to persist on the screen; power is used
only when the image is changed. Thus, the e-ink display is very energy efficient. It has
a high contrast and viewing angle but a low refresh rate. E-ink displays are commonly
used in e-readers, smartwatches, outdoor signs, and electronic shelf labels. Sample E-Ink
module is present in figure 244. The majority of the e-Ink displays are controlled with an
SPI interface. Sample connection is present in figure 246.

Figure 244: Monochrome E-Ink display working principle

Figure 245: E-ink display module

Figure 246: Arduino Uno and E-ink display module schematics

5. IoT Hardware Overview

298

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/eink_basics.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/e-ink_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_eink.png?id=book%3Aiot-open2nded

#include <SmartEink.h>
#include <SPI.h>

E_ink Eink;

void setup()
{

//BS LOW for 4 line SPI
pinMode(8,OUTPUT);
digitalWrite(8, LOW);

Eink.InitEink();
Eink.ClearScreen();//Clear the screen
Eink.EinkP8x16Str(14,8,"IoT e-ink example");
Eink.EinkP8x16Str(10,8,"IoT-open.eu");
Eink.EinkP8x16Str(6,8,"0123456789");
Eink.EinkP8x16Str(2,8,"9876543210");
Eink.RefreshScreen();

}
void loop()
{

}

Colourful e-Ink displays
Recent advances in E-Ink (E-Paper) technology present the ability to display coloured
information. Various approaches are present in the engineering of colourful E-Ink
displays, along with multiple technologies for the presentation of colours.

Tri-colour e-Ink displays with predefined colour areas are a development of the black-
white ones where part of the capsules (usually the upper half), instead of containing
black microcapsules, contain yellow or red. This enables the presence of the information
in black or selected colour, but the colour depends on the location of the information on
the display. This display was designed for shopping shelves (ESL-Electronic Shelf Label)
to emphasize benefits or bargains.

Grayscale e-Ink displays benefit from the fact that microcapsules inside a pixel sphere do
not travel simultaneously. As some capsules have more charge than others, it is possible
to design and charge them the way that variable external charge can pull or push not all
of them but just partially. In practice, it enables the presentation of grayscale in a single
pixel as observed from a distance. A principle of operation is present in figure 247.

5.3. Actuators and Output Devices

299

Figure 247: Grayscale E-Ink display operation principle

Opposite to the above, multicolour e-Ink displays provide a true selection of colours per
pixel and are implemented in various technologies presented below.

Multicolour with filtering
In this construction, classical black-white capsules are covered with colour RGB filters on
top of them. A single pixel is then composed, in fact, of 3 spheres, covered with red, green
and blue and the final colour is observed as a mixture of those. Moreover, controlling
a single sphere similarly to the grayscale displays enables an even bigger number of
colours presented by a single pixel domain without using high resolution and dithering.
This kind of display uses additive colour mixing (RGB). A principle of operation is present
in figure 248.

Note, in RGB filtered displays, at least 3 spheres are needed
to present a single colourful pixel, so the overall resolution is
lower than in monochrome or grayscale E-Inks.

5. IoT Hardware Overview

300

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/eink_basics_grayscale.png?id=book%3Aiot-open2nded

Figure 248: A construction of the E-Ink colourful display with RGB filtering

Multicoloured capsules in a single sphere (ACEP Advanced Colour ePaper)
In this approach, capsules in a single sphere are multicoloured rather than black-white.
Microcapsules of different colours have slightly different charging, so a variating external
electric field applied to the single sphere controls the colour of the capsules on the top
of the sphere that is visible to the user. A single sphere can then present a wide range
of colours. This kind of display uses subtractive colour mixing (CMY/CMYK). A principle of
operation is present in figure ##REF:eink5##.

This solution provides quite good resolution, but controlling
the microcapsules is tricky and requires complex electric field
control.

Figure 249: ACEP E-Ink display operation principle

5.3. Actuators and Output Devices

301

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/eink_colorfull_rgb_filters.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/eink_cmyk_mixed.png?id=book%3Aiot-open2nded

Multicoloured capsules in separate spheres
This approach is theoretical as manufacturing such devices is inefficient because of the
need to compose a matrix of spheres with different colours of microcapsules nearby. A
domain of such spheres composes a single pixel. A principle of operation is present in
figure 250.

Figure 250: Multicoloured capsules E-Ink display operation principle

5.3.2. Electromechanical Devices

Relay
Relays are electromechanical devices that use electromagnets to connect or disconnect
the plates of a switch. Relays are used to control high-power circuits with low-power
circuits. Both circuits are electrically isolated; thus, the control logic is protected from
high voltage, sometimes from the power mains. Relays are used in household appliance
automation, lighting and climate control. Although the electromagnet's coil of the relay
requires relatively low power compared to the power capability of the output circuit, it
cannot be connected directly to the microcontroller's pin. Creating the transistor driver
or using a relay module with the driver built-in is possible. The sample relay module is
present in figure 251 and its connection to the Arduino development board in figure 252.

Figure 251: One-channel relay module

5. IoT Hardware Overview

302

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/eink_cmyk_separate.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/relay_c_2.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_relay.png?id=book%3Aiot-open2nded

Figure 252: Arduino Uno and one-channel relay module schematics

The following example code should work properly for the relay module. It turns the relay
on while there is a “1” state at the microcontroller's output and turns the relay off while
there is a “0” state at the output.

#define relayPin 4 //Define the relay pin

void setup()
{

Serial.begin(9600);
pinMode(relayPin, OUTPUT); //Set relayPin to output

}

void loop()
{

digitalWrite(relayPin,1); //Turns relay on
Serial.println("Relay ON"); //Output text
delay(2000); // Wait 2 seconds

digitalWrite(relayPin,0); //Turns relay off
Serial.println("Relay OFF");
delay(2000);

}

Solenoid
Solenoids use electromagnets to pull or push iron or steel cores. They are used as linear
actuators for locking mechanisms indoors, pneumatic and hydraulic valves and in-car
starter systems.
Solenoids and relays use electromagnets, and connecting them to Arduino is very similar.
Coils need much power and are usually attached to the circuit's power source using a
transistor driver. Turning the coil's power off makes the electromagnetic field collapse
and creates a very high voltage. A shunt diode channels the overvoltage for the
semiconductor devices' protection. For extra safety, an optoisolator can be used. Sample
solenoid is present in figure 253 and connection to the MCU in figure 254.

Figure 253: A solenoid

5.3. Actuators and Output Devices

303

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/solenoid_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_solenoid.png?id=book%3Aiot-open2nded

Figure 254: Arduino Uno and solenoid schematics

The example code to control solenoid is present below:

#define solenoidPin 4 //Define the solenoid pin

void setup()
{

Serial.begin(9600);
pinMode(solenoidPin, OUTPUT); //Set solenoidPin to output

}

void loop()
{

digitalWrite(solenoidPin,1); //Turns solenoid on
Serial.println("Solenoid ON"); //Output text
delay(2000); //Wait 2 seconds

digitalWrite(solenoidPin,0); //Turns solenoid off
Serial.println("Solenoid OFF");
delay(2000);

}

5.3.3. Sound Output Devices

Speaker
Speakers are electroacoustic devices that convert electrical signals into sound waves. A
speaker uses a permanent magnet and a coil attached to the membrane. Sound signal
flowing through the coil creates an electromagnetic field with variable strength; the coil
attracts a magnet according to the strength of the field, thus making a membrane vibrate
and creating a sound wave.
Another widely used speaker technology, called piezo speaker, uses piezoelectric
materials instead of magnets.
Speakers are used to create an audible sound for human perception and ultrasonic sound
for sensors and measurement equipment. Some speakers are designed to generate a
single, fixed-frequency acoustic tone. Such elements are called buzzers and have a built-
in generator to emit sound if the voltage is on. Elements without built-in generators
should be controlled with the frequency signal coming from the microcontroller. Sound-
generating devices require more power than LED, so there is a need to check if the
operating current is lower than the maximum current of the microcontroller's pin as
specified in technical documentation. In the case of the overcurrent, an additional
amplifying element is required, e.g., a transistor. Sample speaker is present in the figure
255 while connection of the piezoelectric one is present in the figure 256.

5. IoT Hardware Overview

304

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 255: Electromagnetic speaker, 8 Ω 0.5 W

Figure 256: Arduino Uno and piezo speaker schematics

const int speakerPin = 9; //Define the piezo speaker pin

void setup()
{

pinMode(speakerPin, OUTPUT); //Set spekaer pin as an output
}

void loop()
{

tone(speakerrPin, 1000); //Send 1 kHz sound signal
delay(1000); //For 1 s
noTone(speakerPin); //Stop sound
delay(1000); //For 1 s

}

5.3.4. Actuators

Actuators are devices that can do a physical action to the surrounding world. Most
actuators are based on one of the forms of electric motors, sometimes directly,
sometimes using a gearbox and advanced control logic.
An electric motor is an electromechanical device which can turn electrical energy into
mechanical energy. The motor turns because the electricity in its winding generates a
magnetic field that inducts the mechanical force between the winding and the magnet.
Electric motors are made in many variants, of which the simplest is the permanent-
magnet DC motor.

DC Motor (One Direction)
DC motor is a device which converts direct current into mechanical rotation. DC motor
consists of permanent magnets in the stator and coils in the rotor. Applying the current
to coils creates an electromagnetic field, and the rotor tries to align itself to the magnetic
field. Each coil is connected to a commutator, which supplies coils with current, thus
ensuring continuous rotation. Some motors have a tachometer functionality as the
loopback signal that generates a pulse train of frequency proportional to the rotation

5.3. Actuators and Output Devices

305

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/speaker_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_piezo_buzzer.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

speed. Tacho signal can be connected to a digital or interrupt input of a microcontroller,
allowing for determining actual rotation speed. DC motors are widely used in power tools,
toys, electric cars, robots, etc. (figure 257). The connection schematic for a small DC
motor is present in figure 258.

Figure 257: A DC motor with gearbox 50:1

Figure 258: Arduino Uno and DC motor schematics

Sample code to control a DC motor using Arduino framework is present below:

void setup ()
{

pinMode(5,OUTPUT); //Digital pin 5 is set to output
//The function for turning on the motor is defined
#define motON digitalWrite(5,HIGH)
//The function for turning off the motor is defined
#define motOFF digitalWrite(5,LOW)

}
void loop ()
{

motON; //Turn on the motor
}

DC Motor With H-Bridge
The H-bridge has earned its name because it resembles the capital 'H' wherein all the
corners are switches, and the electric motor is in the middle. This bridge is usually used
for operating permanent-magnet DC motors, electromagnets and other similar elements
because it allows working with significantly bigger current devices using a small, driving
current. By switching the switches, it is possible to change the motor direction. It is
important to remember that the switches must be turned on and off in pairs (figure 259).

5. IoT Hardware Overview

306

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/dc_motor_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_dcmotor.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/hbridge.png?id=book%3Aiot-open2nded

Figure 259: The flow of currents in the H-bridge

When all switches are turned off, the motor is in free movement. It is not always
acceptable, so two solutions can be implemented. If both positive or negative switches
are turned on at the top or the bottom, then the motor coil is shorted, not allowing it to
have a free rotation – it is slowed down faster. The fastest option to stop the motor is to
turn the H-bridge in the opposite direction for a while.

Neither of these braking mechanisms is good for the H-bridge
or the power source because of excessive current appearance.
This action is unacceptable without a particular reason
because it can damage the switches or the power source.

The motor management can be reflected in the table 34.
Table 34: The Management of the H-Bridge Switches

Upper left Upper right Lower left Lower right Motor work mode

On Off Off On Turns in one direction

Off On On Off Turns in another direction

On On Off Off Braking

Off Off On On Braking

The complicated part is implementing and controlling the switches mentioned above,
usually as relays or appropriate power transistors. The biggest drawback of relays is that
they can only turn the engine on or off. Transistors must be used if the rotation speed
needs to be regulated using the pulse width modulation. The MOSFET-type transistors
should be used to ensure a large amount of power.
Nowadays, the stable operation of the bridge is ensured by adding extra elements. All
elements can be encapsulated in a single integrated circuit, e.g. L293D (figure 260).

Figure 260: The L293D microchip and its representation in the circuit

The L293D microchip consists of two H-bridges and is made for managing two motors. It
has separate control pins for the left and right branches, avoiding the power short circuit
if connected properly.
An example schematic diagram of connecting the chip to the Arduino Uno board can be

5.3. Actuators and Output Devices

307

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/hbridge1.png?id=book%3Aiot-open2nded

seen in figure 261.

Using a PWM signal allows control of the rotation speed.

Figure 261: Arduino Uno and L293D H-bridge schematics

The example code to control the L293D chip is presented below:

int dirPin1 = 7; //1st direction pin
int dirPin2 = 8; //2nd direction pin
int speedPin = 5; //Pin responsible for the motor speed

void setup ()
{

pinMode (dirPin1,OUTPUT); //1st direction pin is set to output
pinMode (dirPin2,OUTPUT); //2nd direction pin is set to output
pinMode (speedPin,OUTPUT); //Speed pin is set to output

}

void loop ()
{

analogWrite(speedPin, 100); //Setting motor speed
//Speed value can be from 0 to 255

int motDirection = 1; //Motor direction can be either 0 or 1

if (motDirection) //Setting motor direction
{//If 1

digitalWrite(dirPin1,HIGH);
digitalWrite(dirPin2,LOW);

}
else
{//If 0

digitalWrite(dirPin1,LOW);
digitalWrite(dirPin2,HIGH);

}
}

Linear actuator
A bidirectional DC motor, usually controlled with an H-bridge and equipped with thread
gear, can be used to implement the linear actuators.
Linear actuators used to be equipped with end position detectors such as switches, or
eventually, their end positions can be detected with overload detection. A simple linear
actuator is present in figure 262.

5. IoT Hardware Overview

308

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_hbridge.png?id=book%3Aiot-open2nded

Figure 262: Low voltage linear actuator

Stepper Motor
A certain angle or step can move stepper motors. The full rotation of the motor is divided
into small, equal steps. Stepper motor has many individually controlled electromagnets;
turning them on or off makes a motor shaft rotate by one step. Changing the switching
speed or order can precisely control the rotation's angle, direction or speed. Because of
their exact control ability, they are used in CNC machines, 3D printers, scanners, hard
drives, etc.
A popular stepper motor is present in figure 263 and its controlling circuit in figure 264.
An example of use can be found in the source [146].

Figure 263: A stepper motor

5.3. Actuators and Output Devices

309

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/linear_actuator.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/stepper_c.jpg?id=book%3Aiot-open2nded

Figure 264: Arduino Uno and stepper motor schematics

The example code:

#include <Stepper.h> //Include library for stepper motor

int in1Pin = 12; //Defining stepper motor pins
int in2Pin = 11;
int in3Pin = 10;
int in4Pin = 9;

//Define a stepper motor object
Stepper motor(512, in1Pin, in2Pin, in3Pin, in4Pin);

void setup()
{

pinMode(in1Pin, OUTPUT); //Set stepper motor control pins to output
pinMode(in2Pin, OUTPUT);
pinMode(in3Pin, OUTPUT);
pinMode(in4Pin, OUTPUT);

Serial.begin(9600);
motor.setSpeed(20); //Set the speed of stepper motor object

}

void loop()
{

motor.step(5); //Rotate 5 steps
}

Servomotor
The servomotor includes the internal closed-loop position feedback mechanism that
precisely controls its position angle. To set the angle, the PWM technique is used.
Additionally, it is possible to control the speed of angle change, acceleration and
deceleration of the rotation.
Servomotors have limited rotation angles depending on their type, e.g. 90, 180 or 270
degrees. A typical servo is 180 degrees (usually a bit lower). Servo powering depends on
size; micro servos are typically between 4.8V and 6V. Larger servos require higher voltage
and more current to operate.
There are two standards for controlling servos, so-called “analogue” and “digital”.
Analogue servos are controlled with a PWM signal of 50Hz (20ms period), while digital
servos, even if backwards compatible with analogue, can be controlled with a PWM signal
up to 250Hz. A duty cycle (a ratio between HIGH and LOW) controls servo position.
We focus below on analogue servomotors, controlled with a 50Hz PWM signal, but the

5. IoT Hardware Overview

310

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_stepper.png?id=book%3Aiot-open2nded

transition to digital ones is straightforward.

Digital servos used to have individual configurations of the
control signals, and it is necessary to refer to the
documentation of the particular model for correct timings.

From the figure 265, it can be seen that the length of the servomotor impulse cycle is
20 ms, but the impulse length itself is 1 ms or 2 ms. These signal characteristics are
true for most enthusiast-level servomotors but should be verified for each module in
the manufacturer specification, e.g. to obtain a full rotation of 180 degrees, it may be
necessary to go beyond standard 1ms↔2ms duty cycle.
The servomotor management chain meets the impulse every 20 ms, but the pulse width
shows the position the servomotor has to reach. For example, 1 ms corresponds to the
0° position but 2 ms – to the 180° position against the starting point. When entering the
defined position, the servomotor will keep it and resist any outer forces trying to change
the current position. The graphical representation of the control signal and its impact on
the position of the servomotor is presented in image 265.

Figure 265: The pulse width modulated signal for different positions of servomotor

Just like other motors, servomotors have different parameters, where the most important
one is the time of performance – the time necessary to change the position to the defined
position. The best enthusiast-level servomotors do a 60° turn in 0.09 s. There are three
types of servomotors:

▪ Positional rotation servomotor – most widely used type of servomotor. With the
help of a management signal, it can determine the position of the rotation angle from
its starting position.

▪ Continuous rotation servomotor – this type of motor allows setting the speed and
direction of the rotation using the management signal. If the position is less than 90°,
it turns in one direction, but if more than 90°, it turns in the opposite direction. The
speed is determined by the difference in value from 90°; 0° or 180° will turn the motor
at its maximum speed while 91° or 89° at its minimum rate.

▪ Linear servomotor – with the help of additional transfers, it allows moving forward
or backwards; it doesn't rotate.

Unfortunately, using Arduino, the servomotor is not as easily manageable as the DC
motor. For this purpose, a special servomotor management library, “Servo.h” has been
created. Using PWM signal in other MCUs may involve the use of hardware or software

5.3. Actuators and Output Devices

311

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/servo1.png?id=book%3Aiot-open2nded

timers and may impact other features as the number of hardware timers used to be
limited. Thus, “Servo.h” implementation may vary between microcontrollers and SDKs.

Sample standard servo is present in figure 266 and connection in figure 267.

Figure 266: A standard servomotor

Figure 267: Arduino Uno and servomotor schematics

The example code to control a servo:

#include <Servo.h> //Include Servo library
Servo servo; //Define a Servo object

void setup ()
{

servo.attach(6); //Connect servo object to pin D6
servo.write(90); //Set position of servo to 90°
Serial.begin(9600);

}

void loop ()
{

servo.write(110); //Set position of servo to 110°
delay(200); //wait for 200 ms
servo.write(70);//Set position of servo to 70°
delay(200); //Wait for 200 ms

}

5. IoT Hardware Overview

312

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/servo_c.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sch_apz_shemas_servomotor.png?id=book%3Aiot-open2nded

5.4. Powering of the IoT Devices

IoT requires a constant and reliable power source to operate devices, sensors, and
communication effectively. The choice of power source for IoT devices is from traditional
batteries to cutting-edge energy harvesting technologies. The factors influencing the
choice are:

▪ device size,
▪ working environment,
▪ intended operation,
▪ lifetime of the device,
▪ operation reliability and availability.

The majority of IoT devices use a DC power source. AC is usually converted into the DC,
eventually used for powering high-power actuators. Most IoT devices rely on batteries
as their energy source, which is common in edge devices. Fog devices are powered
with a mixture of the sources: battery (DC) or socket/grid (AC). Green energy sources
are introduced in both classes; the choice of technology depends on the IoT application
domain and scenario.

Batteries (non-rechargeable or rechargeable) provide DC. A plain battery's voltage (e.g.
1.5V or 3.7V) is unsuitable for directly powering the devices. The raw battery changes
its voltage over time as the discharge process occurs. For those reasons, converters
and stabilisers are used. In the case of modern rechargeable batteries, a charging and
discharging module (battery management) is also necessary to prevent overcharging and
overdraining.
Using green energy sources requires conversion and energy storage as its nature is non-
consistent in the time domain. Using green energy as a power source requires a different
approach towards IoT device control algorithms because of the unpredictable nature of
the green energy sources. It is common for devices to put themselves into the low power
consumption mode on demand because of the sudden lack of energy.

The majority of IoT devices require one or two voltage standards to power
microcontrollers and sensors:

▪ 5V - common of older microcontrollers (such as AVR) and for most peripherals,

5.4. Powering of the IoT Devices

313

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

▪ 3.3V - for recent microcontrollers, more and more peripherals are 3.3V powered.

Integration of the 3.3V and 5V components in one IoT device
is not always straightforward: while controlling a 5V powered
device with a 3.3V signal is usually non-problematic (GPIO-IN),
the opposite requires signal conversion because most devices
do not accept overvoltage on their inputs! Driving a 3.3V GPIO
with 5V can damage a device!

A special note on powering IoT devices with inductive
actuators: a separate DC powering rail should be used.
Actuators using electromagnetic components, such as relays,
motors and servos, should not share a powering bus with MCU.
They introduce profound inference into the power rail (both
rising and falling the nominal voltage), thus frequently causing
instability or rebooting of the MCU due to the over / under
voltages or even leading to permanent damage. Eventually,
capacitor-based filtering can be introduced to reduce power
rail inference if separation is impossible.

When dealing with high current, high voltage or high inference
devices, it is expected to use physical separation of the signals
with means of e.g. optocouplers.

During their operation, IoT devices commonly control their power sources regarding their
condition (e.g., remaining energy, ageing symptoms). In the simplest case, the battery
terminal can be connected to the A/D GPIO (usually via a voltage divider). It is also
expected to measure battery drain, constantly monitoring both current and voltage,
thus calculating energy consumed. Battery Management Systems can be a stand-alone
module or can be a part of the IoT device. In the first case, using some communication
protocol to monitor power source status is required (e.g. Serial or I2C). IoT devices can
then inform the IoT ecosystem about, e.g., approaching running out of power. They can
also limit their energy consumption by switching to sleep mode.

IoT Energy Sources

A reliable energy source is required to keep an IoT device alive. An interruption is when
the energy source shuts down the IoT device, increasing downtime and reducing the
quality of service or the quality of experience the users feel. Therefore, choosing the
energy source is very important when designing IoT systems. The following factors should

5. IoT Hardware Overview

314

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

be considered when selecting an energy source for an IoT device:

▪ Size: In some IoT applications, it is required that the size of the IoT device should
be as small as possible. The chosen power source should be one whose size can be
scaled down as much as possible.

▪ Mobility: In some IoT applications, mobility is an essential requirement (e.g., in
wearable IoT devices), imposing both size and weight constraints on the IoT devices.
The energy source chosen should not be location-dependent sho, should be able to
provide energy to the IoT devices during motion, and should not obstruct the device's
mobility.

▪ Reliability: The energy source chosen should be reliable. That one will supply energy
to the IoT devices when necessary with minimal failures.

▪ Scalability: The energy source chosen should be easily accessible at affordable prices
to ensure a continuous supply of energy to the growing number of IoT devices and
infrastructure.

▪ Cost: The energy source should be cheap, and the cost of energy should also be
reasonable.

▪ minimum maintenance requirement: It is recommended to choose energy sources to
ensure that the devices' lifetime is reasonably long. That is a minimal energy-related
maintenance requirement, especially in large IoT networks.

▪ Ease of deployment: The energy source should be simple to integrate into the IoT
system.

▪ IoT application context: The choice of the energy source depends mainly on the
application context.

▪ Power requirement: The choice of the energy source also depends on the energy
requirement of the device. The energy sources required for IoT devices in agriculture
differ from those in smart factories or smart health applications.

▪ Sustainability: The energy sources chosen should be green and sustainable. The
energy source should produce minimal environmental pollution and be easily
recyclable.

The choice of the energy source is critical in the IoT design process as it will influence the
selection of the computing power, communication protocols and technologies, and the
security mechanism and other subsystems of the IoT system. The three primary energy
sources for IoT devices are:

▪ Main energy
▪ Energy storage systems
▪ Energy harvesting systems.

Main power
In IoT applications where the hardware devices do not need to be mobile and are energy-
hungry (consume significant energy), they can be reliably powered using mains power
sources. The grid's main power is AC power and should be converted to DC power
and scaled down to meet the power requirement of sensing, actuating, computing, and
networking nodes. The hardware devices are the networking or transport layer, and those
at the application layer (fog/cloud computing nodes) are often power-hungry and supplied
using grid energy.

5.4. Powering of the IoT Devices

315

A drawback of using the main power to supply an IoT infrastructure with many IoT devices
that depend on the main power source is the complexity of connecting the devices
to the power source using cables. In the case of hundreds or thousands of devices,
supplying them using the main power is impractical. If the energy from the main source
is generated using fossil fuels, then the carbon footprint from the IoT infrastructure
increases as its energy demands increase.

Energy storage systems
Energy storage systems are systems that are used to store energy so that it can be
consumed later. It is preferable to power IoT devices using energy storage systems. One
scenario is to charge the energy storage system (e.g., battery or supercapacitor) to its
full capacity and then deploy the IoT device with the energy storage system as its only
energy source (figure 268). In this case, when all the energy stored in the system is
depleted, the device is shut down, resulting in an undesirable downtime.

Figure 268: The architecture of an IoT device powered by a battery energy storage system [147]

The time from when the IoT device is deployed to the instant when all the energy stored
in the energy storage system is depleted is called the device's lifetime. Among other
factors such as mobility, scalability, and size, lifetime of the device and the energy
density, energy capacity, and cycle life of the energy storage system are critical design
parameters that should be considered when choosing an energy storage system to use
as an energy source for an IoT device. To increase the lifetime of an IoT device and reduce
the downtime resulting from the depletion of all the energy stored in energy storage
systems of IoT devices, energy harvesting systems are sometimes incorporated into IoT
devices.

Energy harvesting systems
Energy harvesting systems are also an alternative energy source for IoT devices. They
capture energy from the environment and convert it to electrical energy to supply IoT
devices. Suppose the energy captured is more than the power demand of the IoT device.
In that case, the surplus can be stored in energy storage systems when the energy

5. IoT Hardware Overview

316

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/iot_edge_battery.png?id=book%3Aiot-open2nded

harvesting system cannot produce enough energy to supply the IoT device. A significant
drawback of energy harvesting is that the amount of energy that can be harvested at
any given time depends mainly on environmental conditions or the presence of external
energy sources, resulting in a fluctuation in the amount of energy harvested over time.
Hence, it is vital to carefully size the energy harvesting unit and the energy storage
system in such a way as to maximise the lifetime of the IoT device. Sample architecture
of a self-powered Green IoT device powered by a battery energy storage system and an
energy harvesting system is present in figure 269.

Figure 269: The architecture of a self-powered Green IoT device powered by a battery energy storage
system and an energy harvesting system [148]

The kind of energy harvesting system to be deployed depends on the available energy
sources (e.g., light, radio frequency, heat, vibration, wind, etc.). The amount of energy
produced by most IoT energy harvesting systems is minimal compared to the energy
needs of the devices. Some of the factors that influence the choice of the energy
harvesting system are the availability of the energy sources, the size of the device,
the energy needs of the device, and the energy density of the energy source. In a
scenario where one energy source can produce sufficient energy, more than one energy
harvesting system can be deployed (hybrid energy harvesting sources).

IoT Energy Storage Systems

Energy storage systems (ESS) are one of the energy sources for IoT devices. An energy
storage system is a system that is designed to capture or receive energy from the energy
source(s), convert it into a form that the system can conveniently store and then convert
it into other usable forms of energy at a later time when the need arises. In the case
of IoT devices, the electrical energy from energy harvesting systems incorporated in the
IoT devices is converted to storable forms of energy (e.g., electrostatic, electrochemical,

5.4. Powering of the IoT Devices

317

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/iot_edge_device1.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

chemical, etc.) and later converted into electrical energy to power the IoT devices when
needed.

In some deployment scenarios, energy is stored in an energy storage system (e.g., a
battery) and then drawn to power the IoT devices. In this deployment type, when all
the energy stored in the battery is depleted, the battery must be recharged or replaced;
otherwise, the device will be shut down. The device's lifetime is the time from when the
device is deployed to when all energy stored in its energy storage system is depleted. The
energy storage system should be sized in such a way as to maximise the lifetime of the
device to minimise the maintenance frequency and cost. Increasing the energy capacity
of the device may result in an increase in size and price, which may be undesirable.

A possible way to increase the device's lifetime without a significant increase in cost
and size is to incorporate energy harvesters to harvest energy, which is used to supply
the IoT devices and store any surplus in the energy storage systems for later use.
When the device is in sleep mode, most energy harvested is used to charge the energy
storage system. In this case, the energy storage system can be a battery, a capacitor/
supercapacitor/ultracapacitor, or a hybrid (a combination of more than one energy
storage system to exploit the benefits of each of them). In this case, the energy storage
system is designed to ensure a rational balance between the energy harvesting, storage,
and consumption processes and maximise the devices' lifetime.

One of the responsibilities of IoT system designers and developers is to choose
appropriate energy storage systems. The choice of the energy storage system will
depend on the design goals, technical constraints, and other business criteria. Some of
the design requirements to be considered when designing an energy storage system for
IoT include the following:

▪ Safety, convenience, durability (durable operations) - the energy storage system is
safe (less likely to explode or become flammable). It should have a more prolonged
health (should operate for long without requiring replacement).

▪ Energy density - Energy storage systems (ESS) with higher energy densities can store
more energy per unit of mass or volume, reducing the cost, size, and weight of IoT
devices, which also facilitate mobility.

▪ Charging speeds - Energy storage systems with fast charging speeds are preferable.
▪ Ability to charge the ESS with small currents since the energy harvested from IoT

energy harvesters is minimal.
▪ Ability to deal with peak power demand - the ESS should handle peak load demand,

especially during peak communication or computing load demand.
▪ Long-term storage - the ESS should be able to store the energy for long enough to

ensure that it can power the device if the energy-generating source is absent for some
time.

▪ Cycle life - the ESS should have a large charge/discharge cycle to ensure longer
cycle life and less need to frequently maintain or replace the ESS like the case with
batteries.

▪ Cost - ESS made from elements or minerals abundant in nature are preferable as they
will be cheaper. Most batteries are made from lithium, a relatively expensive mineral
compared to sodium, which is very abundant in nature. Efforts are being made to
produce solid-state batteries from sodium, which may eventually lead to cheaper
batteries when technologies to have these kinds of batteries mature.

5. IoT Hardware Overview

318

▪ Mobility - The batteries should be lighter to facilitate mobility.
▪ Size - In some IoT applications, especially in smart health care, it is desirable to ensure

that the device's size is as small as possible, and a small-sized ESS is required.
▪ Environmental sustainability - choosing the ESS in such a way as to maximise the

cycle life minimises the frequency of replacing the ESS, which ensures environmental
sustainability. The ESS could also be manufactured using easily disposed of materials.

▪ Scalability - choosing durable ESS ensure scalability of IoT deployments as the
limitation to scalable IoT deployments is dealing with ESS-related maintenance
issues.

▪ Little or no energy leakage - energy leakage is a significant problem, and the ESS
chosen should not have high energy leakage.

Batteries
IoT devices can be powered with rechargeable and non-rechargeable batteries. The first
requires a charger circuit (built-in or as an external device), while the second is suitable
for ultra-low power devices that can operate on a single battery for a very long time.
Devices with non-rechargeable batteries provide the user with the ability for battery
replacement (mechanically); that is not always the case for IoT devices powered with
rechargeable ones.

Non-rechargeable batteries are available in standard sizes such as AA, AAA, C, and D and
coin-size ones such as LR44 or CR2032.

Rechargeable batteries include transient technologies such as Nickel-Cadmium batteries
(NiCd) and Nickel-Metal Hydride batteries (NiMH), which were modern in the 1990s and
the beginning of the 21st century. They are replaced with Lithium-ion (LiIon) and Lithium-
Polymer (LiPo), which present higher reliability, lack of memory effect and higher energy
density. Still, they are also much more demanding on battery maintenance, including
charging, discharging, operation temperature monitoring, and storage.
Lead-acid batteries are still common, but their application in IoT is limited due to their
size and weight (low energy density), so they usually work as backups, e.g. in the context
of green energy storage.

LiPo
Lithium Polymer battery is a subtype of the Lithium Ion. A single cell of the Lithium
Polymer battery is usually in the form of a flat cuboid (figure 270). The single cell's
standard reference voltage is 3.7V. When fully charged, the cell reaches 4.2V and should
never be charged over this limit. On the other hand, LiPo cells cannot be discharged
below 3.3V (some to 3.0V). The discharge curve is predictable and common for both LiPo
and LiIon. A sample discharge curve is present in the figure 273. Thanks to it, it is possible
to estimate the remaining energy.
Single-cell voltage is low for most applications, so serial-connected cell stacks (battery
packs) are used. Serial connections used to be referenced with S (capital letter s). So, e.g.
3S represents a battery composed of 3 cells, connected in serial. In the case of the serial
connection, the battery's voltage is the sum of each cell. Thus, 3S represents a battery of
3*3.7V=11.1V (reference) or 12.6V when fully charged and 9.9V when fully discharged.
In the case of charging the serial-connected battery packs, charging requires a separate
balancing of each cell and usually requires a so-called microprocessor charger. RAW
battery packs composed of more than 1 cell have two terminals: main and auxiliary for
load balancing (figure 271). The connection for charging the sample 5S battery is present
in figure 272.

5.4. Powering of the IoT Devices

319

Figure 270: Sample 1S LiPo battery cell

Figure 271: Sample 850mAh 3S LiPo battery pack

Figure 272: 5S charging connection schematics

5. IoT Hardware Overview

320

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231017_171838.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/drones/platforms/3s1p.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/drones/platforms/5s_charging_explained.png?id=book%3Aiot-open2nded

Figure 273: Discharging curve for 2.5Ah single cell (1S) LiPo cell

If the battery is broken, you can observe cracks, bends, or
swollen; do not use it, discharge fully and recycle.

Never discharge LiPo battery below 3.0V on normal use.

LiPo batteries are very fragile, and overcharging usually
finishes with fire and explosion.

Do not store LiPo batteries fully charged. They should be
stored semi-charged with some 3.7-3.8V per cell.

LiIon
Lithium Ion batteries are widely common in electronic equipment nowadays. Their
physical form is similar to LiPo ones, but there are also cylindrical units. Similarly
to LiPo, LiIon single cell is nominal 3.6V or 3.7V. Charging and discharging require
advanced control, and all warnings mentioned above regarding charging, discharging and
maintenance of the LiPo cells also apply to LiIon.
The popular model for LiIon cell is the 18650 (figure 274) - the number comes from its
dimension: a cylinder 18mm wide and 65mm high. Typical capacity is 2000-2500mAh per
single 18650 cell.

5.4. Powering of the IoT Devices

321

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/liion_battery_discharge_characteristics.png?id=book%3Aiot-open2nded

Figure 274: Sample 18650 cell

Besides the 18650, other sizes are available, such as 14500 (similar to AA size battery)
with a capacity of hundreds of mAh or 26650 with a capacity exceeding 10000mAh,
designated for high-rate applications such as actuators.

BMS
Most rechargeable batteries require a Battery Management System (BMS) that controls
the charge and discharge of the RAW cells. It is essential, particularly in the case of the
Lithium Polymer batteries and Lithium Ion ones.
BMS prevents overcharging and over-discharging and sometimes controls battery
temperature, limiting charging current if the battery is overheating. Its general purpose
is to keep the battery in good condition for a long time and prevent battery damage.

Overheating and over-charging may cause battery damage,
fire and explosion!

Raw LiIon and LiPo cells are commonly available, and there are also protection and
charging modules in the form of electronic PCBs for self-assembly, e.g., a dedicated
module for an 18650 LiIon cell as in figure 275 and figure 276. BMS can also be integral
to the IoT device's power module, e.g. figure 277. Those boards usually contain DC-DC
converters, providing a stable voltage of 3.3V and/or 5V for powering IoT devices.

Figure 275: Protection module

5. IoT Hardware Overview

322

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231017_171812.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231017_172344.jpg?id=book%3Aiot-open2nded

Figure 276: 18650 cell with protection module applied

5.4. Powering of the IoT Devices

323

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231017_172359.jpg?id=book%3Aiot-open2nded

Figure 277: Integrated power module (BMS) with charger, discharging protection and voltage stabiliser for
3.3V and 5V rails. 2×18650 cells

Capacitors, supercapacitors, and ultracapacitors
Alternative energy storage systems that can be deployed to compensate for the
limitations of batteries are capacitors, supercapacitors, or ultracapacitors. They can be
deployed alongside batteries (hybrid deployment) and may eventually replace batteries
in some IoT deployments. Some of the limitations of batteries that can be resolved with
the use of capacitors, supercapacitors, or ultracapacitors are

▪ Limited cycle life - The limited cycle life requires that batteries should be replaced
frequently, resulting in multiple challenges such as high and tedious maintenance
costs (as it is difficult to service a vast number of IoT devices to replace or charge the
batteries), degradation of the quality of service (as devices can be shut down when
all the energy stored in batteries is depleted), and challenges in disposing of batteries
(as vast amounts of batteries are required to be disposed of).

▪ Inability to handle peak power load demand - Small batteries are often not able to
handle peak power load demands (which may result from peak communication or
computing loads), which will require that the battery should be discharged at a higher
C rate, which may be unhealthy or detrimental to the battery.

▪ Slow charging and discharging process - Batteries' charging and discharging speeds
are relatively slow compared to the charging and discharging speeds of capacitors,
supercapacitors, and ultracapacitors.

▪ Charging and discharge inefficiencies - The magnitude of the energy harvested from
the ambient environment or external sources using the small energy harvesters in IoT

5. IoT Hardware Overview

324

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231022_210946.jpg?id=book%3Aiot-open2nded

devices is very small (in the order of a few hundred microwatts or milliwatts) to charge
batteries but can effectively charge capacitors, supercapacitors, and ultracapacitors
due to their high charging and discharging efficiencies.

▪ Sustainability challenges - Since batteries may be replaced regularly due to their
short lifetime, there is a growing challenge on how to dispose of battery waste
without causing significant environmental damage. Some of the material used to
make batteries is toxic to the environment, and frequent disposal of large amounts of
batteries poses a potential environmental risk.

There is an increase in the adoption of capacitors, supercapacitors, or ultracapacitors as
alternative energy storage systems in IoT devices due to their advantages as alternative
energy storage systems. Some of their advantages include:

▪ Longer cycle life - The cycle life of capacitors, supercapacitors, or ultracapacitors
is far greater than that of batteries. So, there is no need to frequently replace
them, reducing maintenance costs and e-waste generated by the frequently changing
of batteries. Supercapacitors can reach up to one million charge/discharge cycles,
eliminating the limited cycle life problems often experienced when using batteries as
energy storage systems.

▪ High power densities - The high power densities make it possible to charge them with
small currents (since the amount of power produced by IoT energy harvesters is very
small), and also, they can handle peak power load demands (the requires the delivery
of relatively large power to the IoT devices).

▪ Sustainability - Since there is no need to frequently change the energy storage
systems, the amount of waste produced is relatively small. The supercapacitors are
also made from materials that can be easily recycled.

▪ Faster charging and discharging speeds - Capacitors, supercapacitors, and
ultracapacitors can be charged relatively fast compared to batteries.

Although using capacitors, supercapacitors, and ultracapacitors has many advantages
compared to batteries, they also have limitations.

▪ Inability to store energy for long - One of the limitations of this type of energy storage
system is that they do not keep power for long, resulting in the short lifetime of
the IoT devices (the time required to deplete all the energy stored in the capacitors,
supercapacitors, and ultracapacitors).

▪ Size and cost limitations - One possible solution to the problem of short device lifetime
resulting from the quick discharge of capacitors, supercapacitors, and ultracapacitors
is to increase the energy storage capacity, which will increase the size and cost of the
IoT devices, which is not desirable in most IoT applications as devices are required to
be as small as possible.

▪ Decrease in energy capacity - When a supercapacitor reaches the end of its life, its
energy capacity may drop to about 70% of its original value, limiting its ability to meet
the energy storage needs of IoT devices.

▪ Energy losses - They suffer from energy losses resulting from internal energy
distribution and current leakage, resulting in wastage of the energy harvested and
stored. The power leakage leads to low utilisation of the harvested energy, and a
portion of the harvested energy leaks away instead of powering the IoT devices.

Unlike batteries, supercapacitors have a lower energy density but do not suffer from

5.4. Powering of the IoT Devices

325

cyclic degradation, similar to the case with battery cells. Ceramic capacitors are often
used as an energy storage system to store energy harvested by energy harvesters
incorporated into IoT devices because of their low degradation, low current leakage,
and expected increase in energy densities. Thus, they are an excellent candidate to
be adopted as energy storage systems deployed in industrial IoT devices [149] and IoT
devices in other sectors.

Other energy storage systems
Although electrochemical energy storage systems (e.g., batteries) and electrostatic
energy storage systems (e.g., capacitors, supercapacitors, and ultracapacitors) are the
most popular energy storage systems used to store energy to be used to power IoT
devices, other energy storage systems can be used, especially at the transport layer
(internet access and core networks) and fog and cloud computing layer. Some of these
other energy storage systems may not be convenient for IoT devices. Some of them
include the following:

▪ Chemical energy storage systems - chemical energy storage systems convert the
electrical energy delivered to them into chemical energy, which can then be
converted into electrical power to supply the IoT systems later. One popular example
of a chemical energy storage system is the hydrogen energy storage system. In a
hydrogen energy storage system, electrical energy is converted into hydrogen, which
is then stored. One of the approaches often used to produce hydrogen is water
electrolysis, which produces hydrogen and oxygen. The hydrogen is then stored and
later used as fuel in a fuel cell to generate electricity to power the IoT infrastructure
(e.g., base stations and data centres). Compared to battery energy storage systems
and supercapacitors, battery energy storage systems are inefficient as much energy
is wasted. However, much research is being conducted by major energy and car
companies and academic institutions to improve the efficiency of hydrogen energy
storage systems, as it is expected that hydrogen energy storage systems should be
among the top innovative technologies for future green economies.

▪ Mechanical energy storage system - mechanical energy storage systems can convert
electrical energy into mechanical energy (potential or kinetic energy), which can then
be converted into electrical energy to power IoT systems later. The most popular
mechanical energy storage systems include pumped hydro, flywheels, and gravity
energy storage systems. Mechanical energy storage systems are simple to design, as
this technology has existed for hundreds of years. One of the limitations is that they
have very low energy density and are also very inefficient.

Hybrid energy storage systems
The various energy storage systems that we have discussed above have their
advantages and drawbacks. One possible way to exploit the advantage of some energy
storage systems and eliminate the limitations imposed by some energy storage systems
is to deploy more than one energy storage system. An energy storage system that
consists of more than one energy storage system is called a hybrid energy storage
system. The deployment of hybrid energy storage systems (more than one energy
storage system) improves the overall performance of the energy storage system in terms
of energy density, reliability, and the cycle life (or lifespan) of the energy storage system.
It also reduces the overall cost of the energy storage system.

In IoT devices, batteries and supercapacitors can be deployed as a hybrid energy storage
system. The advantage of supercapacitors is that they can be charged faster, even

5. IoT Hardware Overview

326

with small currents (typical of the currents delivered by IoT energy harvesting systems).
The supercapacitor can also handle peak power loads and have a longer cycle life
than batteries. The limitation of supercapacitors is that they cannot store energy for
a long time, but batteries can store energy for a long time. Therefore, a battery and
supercapacitor can be installed in an IoT device to provide a hybrid energy storage
system that takes care of the limitations of both and exploits their advantages to offer
improved performance.

Batteries are often used as an energy storage system in base stations and cloud data
centre sites powered by renewable energy. Due to the limitation of cycle life and power
density, a hybrid energy storage configuration consisting of a supercapacitor and battery
can be considered. Another kind of configuration is a battery and a hydrogen energy
storage system. When the battery is full, any additional energy harvested is lost (in some
installations, it is passed through a dumb load to dissipate it).

In a battery-hydrogen hybrid energy storage system configuration, when the battery is
full, the additional electrical energy harvested is used in water electrolysis to split water
molecules to produce hydrogen and oxygen. The oxygen is then stored and later used
as fuel in a fuel cell to generate electricity when necessary. This type of hybrid energy
storage is beneficial for seasonal energy storage where during the season when the
conditions for energy harvesting are favourable (e.g., during summer), a lot of energy
is harvested and stored in the form of hydrogen, which is then used during winter to
generate electricity when the energy harvesting is not enough.

Converters for IoT Powering

Power Conversion
Power sources tend to provide energy in a form that is not straightforwardly acceptable
to IoT devices.
Wall sockets provide relatively high voltage alternating current (AC) that needs to be
lowered and converted into DC, also stabilised as required by MCU, which is fragile for
voltage variations. Common conversion flow for AC sources is present in figure 278. DC
power sources (such as batteries) also require voltage conversion and stabilisation. The
flow is present in figure 279.

Figure 278: AC power source conversion flow

5.4. Powering of the IoT Devices

327

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/power_conversions.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/power_conversions2.png?id=book%3Aiot-open2nded

Figure 279: DC power source conversion flow

Common voltage conversions are:

▪ AC-to-AC conversion,
▪ AC-to-DC conversion,
▪ filtering,
▪ DC-DC conversion and voltage stabilisation.

Stabilisation usually is included as a part of DC-DC or AC-DC conversion.

AC-to-AC
AC-to-AC conversion is used whenever a high-voltage source is available and is required
to lower it, typically somewhere between 12V and 5V.
Historically, AC-to-AC conversion was implemented using a transformer (symbol in figure
280). This technique has serious drawbacks:

▪ transformer-based converters are heavy as they use copper coils and steel cores
(sample transformer in figure 281),

▪ the conversion rate is fixed, thus requiring different transformers in the countries with
different socket voltages,

▪ require separate AC-to-DC conversion module (Graetz bridge at least).

Figure 280: Transformer symbol

Figure 281: Sample high to low voltage transformer

Modern converters use a switching-mode power supply (SMPS) without a transformer,
just a small coil. Those converters used to be much more complex, but nowadays, most

5. IoT Hardware Overview

328

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/transformer.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/transformer.jpg?id=book%3Aiot-open2nded

of the circuit is implemented in a single, integrated chip. Currently, the cost of the SMPS
is much lower than the transformer-based one. SMPSes are:

▪ much lighter and compact (do not involve the use of a transformer),
▪ usually integrate AC to DC conversion in a single circuit,
▪ accepting a wide range of input AC and DC voltages, thus can be used virtually

worldwide and in various environments.

AC-to-DC
In general, IoT devices use DC to power MCUs and peripherals. A classical AC-to-DC
conversion involves a Graetz's bridge with 4 diodes (schematic in figure 282), currently
implemented commonly in a single enclosure as in figure 283.

Figure 282: Graetz bridge

Figure 283: Graetz bridge in single enclosure

SMPS is used to integrate all necessary functions (including voltage stabiliser) in a single
device, e.g. in figure 284.

5.4. Powering of the IoT Devices

329

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/graetz.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/graetz.jpg?id=book%3Aiot-open2nded

Figure 284: Sample AC to DC converter with voltage stabilised output

Filtering
Proper filtering of the current interferences is essential to ensure stable MCU operation.
Even when using good quality power sources, nearby communication wires, power wires,
and electromagnetic fields generated by actuators can cause severe interference voltage
rise and drop. For this reason, the use of capacitors is essential. A rule of thumb is to add
a large capacity (e.g. 1000uF) capacitor on the power bus and 100nF capacitors close to
the IoT device's MCU and other sensitive components. It may be specific to the device
so unstable work may require analysis of the power bus interferences regarding their
frequency and amount.

DC-to-DC and voltage stabilisation
The DC-to-DC conversion is needed whenever the source voltage is unsuitable for an
IoT device. It is also needed in the case of batteries as a second stage after AC-DC
conversion. DC-DC converters involve voltage stabilisation.
Modern DC-to-DC converters are implemented with fixed output voltage or regulated to
decrease (step-down) or increase (step-up) the voltage. Some circuits can implement
both: step-up-down, where voltage is controlled with a regulator (usually a
potentiometer).

Former solutions include linear voltage stabilisers (only step-down), e.g. popular and still
used 78xx chips. Sample 5V stabiliser 7805 is presented in figure 285. Depending on their
application and maximum current, linear stabilisers are available in various enclosures.
They have several drawbacks, however:

▪ low efficiency,
▪ limited current,
▪ overheating - they require a radiator even for relatively low currents, e.g. over 1A,
▪ fixed voltage output (without the use of the external components).

Their advantage is that they are much easier to embed into the circuit as use requires
only a few passive components. The sample application circuit is quite simple and present
in figure 286.

5. IoT Hardware Overview

330

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231017_172145.jpg?id=book%3Aiot-open2nded

Figure 285: Linear voltage regulator

Figure 286: Linear voltage regulator application circuit

Modern DC-DC converters are of high efficiency, easily going over 90%. They are
implemented as switching regulators rather than linear. The construction of the switching
converters is quite complex. Sample device with fixed voltage regulation is present in
figure 287 and the one with variable voltage, in figures 288 and 289, where the output
voltage can be set using a potentiometer.

Figure 287: Fixed voltage step down converter module

Figure 288: Variable voltage step-down converter module

5.4. Powering of the IoT Devices

331

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/lm7805-5v-1a-linear-regulator.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/7805.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231017_171951.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231025_130353.jpg?id=book%3Aiot-open2nded

Figure 289: Variable voltage step-down converter module with additional 5V utility power source

Green Energy Sources in IoT

Powering IoT devices using energy storage systems (e.g., batteries or capacitors/
supercapacity/ultracapacitor) faces some challenges, such as the limited lifetime (the
time from when an IoT device is deployed to when all the energy stored in its energy
storage system is depleted or consumed), maintenance complexity, and scalability. In
an IoT infrastructure with massive numbers of IoT devices (e.g., massive IoT), frequent
change of IoT batteries results in maintenance complexities, high cost, and sustainability
challenges. One of the solutions to these challenges is using energy harvesters to harvest
energy from the ambient environment or external sources (e.g., vibrations or human
body sources) to power the IoT devices. Energy harvesting is capturing energy from the
ambient environment or external sources, which is then converted into electrical energy
that can be used to power IoT devices or stored for later use.

IoT end node devices (Edge class) are usually powered with low current and voltage. This
raises new capabilities to use green energy sources, which is essential in particular in
distant and remote locations (e.g. earthquake sensors).

When selecting a renewable energy source, it is essential to consider:

▪ An energy budget - is the renewable energy source able to deliver enough energy for
the duty cycle of the IoT device?

▪ Is there a need to provide a backup energy source to ensure continuous operation of
the IoT device?

▪ How do ageing and time (daytime, season) affect the energy received from the green
energy source?

▪ What is the cost of the green energy source compared to other powering
opportunities?

▪ Is there an AC needed?

Answers to those questions drive a selection of the green energy source, which always
regards a specific duty cycle and working conditions of the IoT device.
A short characteristic of selected green energy sources can help during powering design.

5. IoT Hardware Overview

332

https://www.roboticlab.eu/homelab/_detail/en/iot-open/hardware2/powering/20231017_172244.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Energy harvesting from ambient sources
The energy can be harvested from ambient sources (environmental energy sources) such
as solar and photovoltaic, Radio Frequency (RF), flow (wind and hydro energy sources),
and thermal energy sources. Ambient energy harvesting is the process of capturing
energy from the immediate environment of the device (ambient energy sources) and
then converting it into electrical energy to power IoT devices. The ambient energy
harvesting systems that can be used to harvest energy to power IoT devices, access
points, fog nodes or cloud data centres include:

▪ Solar and photovoltaic energy harvesting: capturing natural light energy (in the case
of light) or artificial light (in indoor deployments) and converting it into electrical
energy to power IoT devices.

▪ Radio frequency (RF) energy harvesting: Capturing RF energy from the environment
and converting it into electrical energy to power IoT devices.

▪ Flow energy harvesting: Converting the energy generated from airflow (e.g., wind
energy harvesting) or water (e.g., hydro energy harvesting) into electrical energy to
power IoT or other IT infrastructures.

▪ Thermal: Capturing the energy generated from temperature differences and
converting it into electrical energy to power IoT systems and other IoT infrastructures.

▪ Acoustic noise: Capturing the energy from the pressure waves produced by a
vibrating source and converting it into electrical energy to power IoT devices.

Solar and photovoltaic energy harvesting
So far, solar energy is the easiest and most widespread option to power remote IoT
devices. It is available virtually worldwide, simple to implement and integrated with other
energy resources.

Solar energy is grabbed using solar panels. Solar panels deliver DC. Solar panels work
best in mid-temperature (overheating decreases efficiency) and when located
perpendicular to the solar rays. As the sun changes its position during the day and during
the season, it is important to ensure the correct angle to maximise the solar exposition
possible when using a fixed mounting of the solar panels. Some active trackers can follow
the sun's location in the sky and change the angle of the solar panel accordingly, but that
requires an additional control system and extra energy. Tracking is usually unsuitable for
small, low-powered IoT devices such as sensors.

Depending on the region, the weather (primarily clouds, snow and rainfalls) seriously
impacts panels' efficiency and, thus, the amount of energy available. For this reason, it is
common for solar panels to be oversized and equipped with backup energy storage, such
as a battery pack. Moreover, in subpolar and polar regions, daylight is very short during
the winter or even unavailable for latitudes beyond the polar circle.

Radio frequency (RF) energy Radiofrequency (RF) energy harvesting is among the
most popular energy harvesting technologies developed to power self-powered IoT
devices like IoT RFID tags and smart cards. The RF electromagnetic is captured and
converted into electrical energy, which is then used to power the IoT devices or stored
in a battery or capacitor/supercapacitor/ultracapacitor to be utilised later. Specialised
antennas (including RF input filter and impedance matching network) are used to capture
RF signals rectified by passing them through a rectifier, which rectifies the RF signals,
converting the RF power into DC power. The DC power can then be used to power IoT
devices or stored for later use.

5.4. Powering of the IoT Devices

333

The sources of RF signals could be from mobile cellular networks, radio and television
wireless transmitters, and other Wireless access points (e.g., WiFi). The RF energy
harvesting is influenced by the frequency of the signal, antenna gain, and the distance
of the device from the source of the RF signal (e.g., the distance of the IoT device from
a cellar base station, especially in situations where a cellular base station generates the
RF signal). Although the amount of energy harvested from RF sources is relatively tiny,
RF energy harvesting systems can easily be implemented. RF energy is readily available,
making RF energy harvesting a cheaper and more convenient energy harvesting solution
for power tiny and low-power (less energy-hungry) IoT devices. A significant possible
drawback of RF energy harvesting is that when millions or tens of billions of RF-powered
IoT devices are deployed in a given environment, RF energy harvesting may pose a
health risk.

Flow energy

1. Wind energy
Wind energy is grabbed using a wind turbine, which converts rotation into a magnetic
field that generates electric energy. Raw turbine delivers AC, which must be converted
into the DC suitable for IoT devices. This conversion drops efficiency.

Wind energy is weather-dependent, so it is usually not a single energy source but works
in parallel with other sources and frequently requires backup energy storage. Winds too
strong for a turbine may cause damage; thus, the turbine has to be switched off in
such cases. When the wind is too low, it cannot push the propellers, so energy is not
generated.

Wind turbines tend to be big, and as they contain complex mechanics (blades, rotor, gear,
generator), they require inspection and maintenance. Thus, they are not suitable for the
“set and forget” IoT applications.

2. Hydro energy
Water energy is considered a stable energy source, eventually depending on the season.
Its advantage is the ability to generate energy for a whole day, regardless of the day and
night. Water energy is complex in use, however, because it uses additional infrastructure
(e.g. pipes that deliver water).

Water turbines work with similar principles to wind turbines but use water to push the
propellers instead of wind. Water turbines generate AC, so that needs to be converted
to DC. Because of their size and the need for maintenance, they share a similar
development area as wind turbines.

Water can also be considered as a backup energy battery regarding gravity: during the
energy overhead, it can be pumped with that energy up, and then, thanks to the gravity
and use of water turbines, this energy can be re-used when there is a lack of other energy
resources. This process is used on a large scale and is known as a “pumped storage
power plant”. However, principles remain scalable; they involve complex infrastructure
and other (usually green) energy sources such as wind or solar.

Due to complexity, water turbines are not the first choice to power small IoT devices but
rather to set up a local medium-scale energy source or support the grid.

Water has recently been considered a medium to generate hydrogen using external
energy sources (such as solar panels or wind). When energy is available, hydrogen is
generated and stored in tanks; later, it is used for energy generation using fuel cells

5. IoT Hardware Overview

334

and converted back from hydrogen and oxygen into water. Similar to the aforementioned
pumped storage power plant, this solution delivers clean energy storage but also requires
complex and extensive infrastructure. Hydrogen is also an explosive gas.

Thermal energy harvesting

Thermal energy harvesting is the capture of thermal energy and conversion into electrical
energy to power IoT devices or store it for later use. Thermal energy is readily available
in the environment (at home, in factories, and in regions with high temperatures).
Some heat sources include car engines, geothermal heat from the ground, and heart
from industrial operations. With the use of thermoelectric generators, thermal energy is
captured and converted into electrical energy to power IoT systems or to store for future
use.

Geothermal energy is considered to be very constant but of low availability. Its application
is based on steam and hot water conversion to electrical energy, usually via high
and low-pressure turbines. Due to the complex processing involving dealing with high
temperatures (e.g. overheated steam of >200C)[150], it is suitable for mass-scale energy
production for a grid rather than as a small energy source to power a single IoT device.

Energy harvesting from external sources
Below is a short list of energy harvesting characteristics from non-ambient, in general,
external sources.

Energy harvesting from mechanical sources

▪ Vibration energy harvesting - harvesting the energy created by vibrations (e.g., due
to car movements, operations of machines, etc.) and converting it into valuable
electrical energy, which can be used to power IoT devices or stored in the battery for
later use.

▪ Pressure energy harvesting - harvesting the energy from pressure sources and
converting it into useful electrical energy.

▪ Stress-strain energy harvesting - harvesting energy from mechanical vibrations by
exploiting the property of some materials (e.g., piezoelectric materials) that, when
subject to mechanical strain, produce an electrical charge proportional to the stress
applied to it.

Energy harvesting from human body sources

Human body energy harvesting is harvesting energy from the human body and then
converting it to electrical energy. It is used to power wearable IoT devices, especially
IoT devices designed for smart health applications. The energy source could be the
vibration or deformations created by human activity (mechanical energy). The energy
source could be from human temperature differences or gradients (thermal energy) or
human physiology (chemical energy).

▪ Human activity energy harvesting - capturing the biomechanical energy resulting
from human activities (walking, cycling, running, and other exercises) and then
converting it into useful electrical energy that can be used to power the IoT devices
or stored for later use.

▪ Human physiological energy harvesting - capturing the biochemical energy resulting
from human physiological processes and then converting it into electrical energy that

5.4. Powering of the IoT Devices

335

can be used to power IoT devices, especially medical implantable IoT devices.
5. IoT Hardware Overview

336

6. Introduction to the IoT Communication and
Networking

Mind, there is “I” in IoT!

In no doubt, IoT is network-oriented: even the name IoT naturally relates to the Internet
network. Communication is an essential part of IoT ideas. Every IoT device must
somehow communicate, even the simplest, passive RFID tag – it responds with some data
to the excitation.
Communication is always performed with some rules known for both communicating
parties. Like people have different languages to use, devices have protocols.
Communication protocol describes how to address the information to the remote device,
encode the data, and check the incoming message's correctness. The physical layer of
the protocol description also tells how to transmit every bit of data, the frequency of
radio waves, how fast we can send the data and the maximum range of the transmission.
Those duties are pretty challenging to address in the context of the IoT, constrained
devices.

Communication in IoT devices can be wired or wireless:

▪ End node (edge) devices mainly use wireless transmission.
▪ Fog-class devices use both, particularly as gateways or routers.
▪ The cloud segment of the IoT ecosystem extensively uses wired copper and optical

(fibre).

IoT networking differs significantly from typical, multilayered, stack-oriented TCP/IP or
similar communication models we know while using our PCs, MACs, servers or
smartphones. Indeed, constrained IoT devices are usually unable to operate regularly –
full time on ISO/OSI layered stack because of constrained resources. In detail, it primarily
means IoT devices are limited by processor power, RAM and storage sizes, mainly
because of limited power resources. IoT device is expected to be energy efficient, thus
low powered, that in most cases excludes typical wireless connection standards, e.g. WiFi.
On the other hand, IoT devices are expected to communicate over long distances – some
couple or a dozen kilometres – where wired infrastructure like Ethernet cables and related
infrastructure is non-existent and most of the wired technologies, copper-based, are out
of range.

Also, IoT devices' daily life-cycle is much different than, e.g. PC life-cycle. We as humans
used to switch on the notebook, work extensively on the web, then turn it to low power
or off, making the machine sleep, hibernate or just shut it down. And we wake it up
when needed. It barely makes network operation during sleep. IoT devices are expected
to be sleeping, providing low power mode whenever possible, and on the other hand,

6. Introduction to the IoT Communication and Networking

337

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

they're supposed to be fully operable when only needed. Most performed IoT tasks
related to sensing have a cyclical nature, e.g. measuring gases as a sensor-network node.
In contrast, the period can be between seconds and months or even longer. They're
usually expected to trigger themselves to be awake from sleep, perform some operation
and connect to the network. Meanwhile, the network grid needs to be aware that those
devices are still in their place, in good condition and able to awake (e.g. the battery is not
being drained).

Because of the existence of different IoT devices, including those very constrained
from 8-bit processors with some kB of the RAM to 32-bit multicore machines well-
replacing PCs, IoT networking is very competitive on protocols, approaches and solutions.
Standardisation organisations like IEEE indeed introduce some networking standards, yet
they are competed by large manufacturers forcing their complex solutions, including
dedicated hardware, software and protocols. The third force driving this market is open
solutions and enthusiasts, usually working with cheap equipment, providing de-facto
standards for many hobbyists and industries.

An interesting survey made by RS components [151] shows 11 wireless protocols used
in IoT. Some of them you can use for free without having any license to purchase, while
others are proprietary, and some need a subscription plan.

The following chapters explain some of the most popular concepts about organising
networks, fulfilling the above constraints on communication between IoT devices
(Machine-2-Machine) and how to let them communicate with the Internet, including
hardware, software and human users. We focus on the de-facto standards existing on the
web, usually as open-source libraries and somewhat low-cost devices.

6. Introduction to the IoT Communication and Networking

338

6.1. Communication Stack

IoT devices are not separated from the global networking environment that nowadays is
highly integrated, connecting various wired and wireless transmission standards into one
network called the Internet. Indeed, some networks are separated because of security
and safety reasons and regulations, yet they usually share the same standards as global
Internet networks.

The XXI century brought wide acceptance of wireless connections. They became
prevalent even in so-called pico-networks, like your PAN (Personal Area Network)[152],
implemented using, e.g. Bluetooth Connection, where your smartphone in the left pocket
of your jeans is hosting a server. There are many wireless devices connected to it: your
wireless headset/audio device that you're listening to music, wireless HID controller,
your Smartwatch, AR glasses, etc. All those devices constitute a personal (PAN-Personal
Area Network) - a wireless network cell, usually also routed via NAT (Network Adress
Translation) [153] to the Internet, through some other wireless connection gateway or
router, using WiFi or mobile data (3G/4G/LTE).
Many IoT devices share standard wireless protocols, models and ideas, but some are not
powerful enough to integrate with the Internet. On the other hand, wireless connections
are natural to IoT devices, where they are expected to operate in remote destinations,
usually without any wired infrastructure. Because of it, some Internet standards were
adapted to their constraints or networks of constrained devices are separated and
gatewayed through more powerful devices, where protocol translation occurs. Those
models are discussed below in the following chapters.

In a similar way to regular Internet networking, IoT networking is implemented using a
(usually simplified) layered stack, similar to the regular ISO/OSI 7-layer networking stack
well known to all IT students [154], where the lowest 3 levels constitute so-called Media
layers of the stack (recommendation X.200).

6.1. Communication Stack

339

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 290: ISO/OSI multi-layer Internet networking protocol stack

Level 1 is a Physical Layer (PHY). On top of it, level 2 is the Data Link Layer with
Media Access Control and Logical Link Control (MAC/LLC). Level 3 is the Networking layer
(NET) where packets are formed and routed as presented in figure 290. ISO-OSI model
was designed and implemented for dedicated network controller chips and powerful
processors; thus, not all IoT devices can fully implement this model, mainly because
of constrained RAM and storage memory sizes. Also, this model requires an instant
connection to the remote node (PHY dependent), so it strongly impacts the battery drain
in the case of constrained-power devices.

A quick overview of popular communication technologies for the Internet is presented in
figure 291. Note wide distance range between nodes of the Wireless devices regarding
protocol used (primarily because of the PHY nature) where it varies from some meters
in case of piconets up to some 180–2000 km when considering LEO (Low Earth Orbit)
satellites, e.g. communicating through Iridium network and even up to about 35 786 km
in case of the use of the geostationary satellites [155].

Another factor is the communication bandwidth. Fortunately, IoT devices usually do not
require high bandwidth – a couple of kbps is enough; thus, almost all protocols apply
here.

6. Introduction to the IoT Communication and Networking

340

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/grafika2.png?id=book%3Aiot-open2nded

Figure 291: Popular wireless networking standards

In many cases, IoT remote, distant nodes do not need constant communication, e.g.
weather sensing would better communicate on a datagram communication model (UDP
rather than TCP) [156]. In such cases, IoT devices utilize a simplified IoT stack, as
presented in figure 292.

Figure 292: Simplified, IoT-oriented implementation of the protocol stack (using UDP)

6.1. Communication Stack

341

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/grafika.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/grafika6.png?id=book%3Aiot-open2nded

6.2. Communication Models

IoT Devices can be classified regarding their ability to implement full protocol stacks of
the typical Internet protocols like IPv4, IPv6, HTTP, etc.

▪ Devices unable to implement full protocol stack without external support, like, e.g.
Arduino Uno (R3) with 32 kb of flash memory, 16 MHz single core processor and 2 kB
of static ram, battery-powered, consuming some couple of mW while operating.

▪ Devices that can implement full protocol stack yet are still limited by their resources,
e.g. ESP8266 and ESP32 chips, battery-powered, consuming some dozen or hundred
of mW while operating.

▪ Devices that can offer various advanced network services, capable of efficiently
implementing protocol stack yet not servers, routers or gateways, e.g. Raspberry Pi
and its clones. Usually, DC powered with power consumption far above 1–2 W, usually
up to 10–15 W.

▪ Dedicated solutions for gateways and routers, usually with embedded, hardware-
based implementations of the switching logic, utilising some 10-50W of power.

▪ Universal IoT computers (e.g. Intel IoT), using PC-grade processors (x86, but
sometimes ARM), using some about up to 100 W of power.

Some IoT networks are also constrained by the number of IP addresses available
regarding the number of IoT devices one needs to connect, so their topology is a priori
prepared as NAT (Network Adress Translation) solution [157] thus it requires automatically
use of routers.

IoT devices are usually expected to deliver their data to some cloud for storage and
processing while the cloud can send back commands to the actuators/outputs.

Finally, security concerns usually put the IoT devices in some separate sub-network and
guarded by a firewall.

The abovementioned limitations bring 3 communication models available regarding
specific IoT ecosystem requirements.

Device to Device and Industry 4.0 Revolution
The device-to-device communication model, sometimes referenced as M2M (machine-
to-machine communication model), used to be implemented between the homogeneous
class of IoT devices. Nowadays, there is a need to enable heterogeneous systems to
collaborate and talk one-to-another. In a device to a device model, communication is
usually held simple, sometimes with niche, proprietary protocols, i.e. ANT/ANT+ [158],
sometimes employs heavy protocols like XML, so there is a need to provide standard
communication ontologies and semantics. Devices participating in such networks usually
act as multimode, constituting self-organising networks, capable of exchanging the data
through routing and forwarding as it appears in 6LowPAN networks where nodes may
not only act as data producers/consumers but are also expected to act as message
forwarders/routers.

6. Introduction to the IoT Communication and Networking

342

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

The device-to-device model is highly utilised in Industrial Automation Control systems
and recently very popular in developing Industry 4.0 (I4.0) solutions, where
manufacturing devices, i.e. robots and other Cyber-Physical systems (CPS), communicate
to set operation sequences for optimal manufacturing process (so-called Industry 4.0)
thus providing elastic working zones along with manufacturing flexibility and self-
adaptation of the processes. It happens because of the presence of various IoT devices
(here, sometimes referenced as Industrial IoT) and advanced data processing, including
Big and Small data. Such device-to-device networks frequently mimic popular P2P (peer-
to-peer) networks, where one device can virtually contact any other to ask for information
or deliver one. Compared to the classical, tree-like topology, device-to-device
communication constitutes a graph of relations rather than a hierarchised tree. Figure
293 presents comparison between pre-I4.0 (Industry 3.0) and I4.0 flow. Along with
physical (real) devices participating in the manufacturing process, there usually goes
their virtual representation (“digital twin”) to enable cognitive manufacturing based on
data science. The detailed description of the data analysis and its use in I4.0 is out of the
scope of this book, however.

Figure 293: Industry 3.0 vs Industry 4.0 communication topology

The device-to-device communication assumes participating devices are smart enough to
talk to one another without the need for translation or advanced data processing, even if
their nature is different (e.g. your intelligent door can inform your smart IoT kettle to start
boiling water for warm tea, once they get informed about poor weather condition by the
Internet weather monitoring service when you're back home after a long day of work).
Devices constituting mesh or scatter networks communicate virtually with one another in
a similar way people do. Figure 294 briefly presents the data flow idea

6.2. Communication Models

343

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/i30vsi40.png?id=book%3Aiot-open2nded

Figure 294: Device to device communication model

Device to Gateway
Device-to-gateway communication occurs when there is a need to provide the translated
information between different networks, e.g., some Zigbee [159] network devices need
to send data to the Internet to monitor the smart home remotely and manage. This
model also appears when there is a need to transfer messages between the IoT network
implemented with constrained devices, so using some simplified protocol (e.g. LoRA,
6LowPAN) and the Internet network, using the full implementation of the protocols
(e.g. IP6). In this case, the gateway device (sometimes named here as Edge Router)
needs to know constrained devices constituting the IoT network, and it usually supplies
some missing information instead of them, e.g. enriching message headers or addresses
when passing packets from IoT-constrained network to the Internet, but also translating
Internet packets (e.g. by removing full address), when acting opposite, e.g. forwarding
actuator requests to the IoT devices.

Gatewaying and protocol translation can also occur on the 6th and 7th level of the
ISO/OSI model when the implementation of high-level protocols overwhelms even more
advanced IoT devices, e.g. simple MQTT texting can be converted to the XML, heavy
messages or exposed as XHTML. Those solutions are mostly software-based, e.g. Node-
RED [160]. Figure 295 briefly presents the data flow. Please note the protocol change:
arrows of the different colours reflect it.

6. Introduction to the IoT Communication and Networking

344

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/dev-dev.png?id=book%3Aiot-open2nded

Figure 295: Device to gateway communication model

Device to Cloud
As IoT devices usually cannot constitute an efficient computation structure (as a single
IoT node or even their federation), most data is forwarded to the server, often a cloud-
based solution, where it is stored and processed. This data processing in the cloud
varies, depending on the type of information, their goal, etc. In any case, we usually face
the problem of visualisation and data analytics (statistics, AI, data mining, knowledge
discovery, big data processing). Those tasks are resource-consuming and require
substantial processing capabilities; thus, cloud solutions are usually a good choice.
In this context, “cloud” means public clouds like Amazon, Google or Microsoft and
dedicated solutions hidden somewhere in the separated manufacturing networks.
Eventually, there is a need to send back some actuation requests to the devices from
the cloud. Cloud services are usually PC-based solutions; thus, they extensively use rich
protocols, providing their APIs via REST [161], SoAP [162], HTTP GET/POST methods [163],
etc. It requires IoT devices interfacing with the cloud to implement full communication
stacks. Some IoT devices can interface with cloud services directly. Still, some of them
cannot do so due to the constraints, so it is necessary to use gateways, as mentioned in
the previous chapter.

6.2. Communication Models

345

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/dev-gwy.png?id=book%3Aiot-open2nded

Figure 296: Device to cloud communication model

Recent advances in hardware development and energy-
efficient design allowed even the edge-class constrained
devices to implement some simple AI models. Still, AI model
training, updating and using reinforced learning models
typically involves a cloud-based solution.

6. Introduction to the IoT Communication and Networking

346

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/dev-cloud.png?id=book%3Aiot-open2nded

6.3. Media Layers - Wired Network Protocols

While the IoT ecosystem is usually considered to be composed of wireless devices, it is
still possible to connect IoT solutions using a wired connection.

When wireless-enabled SoCs were about to be delivered to the market (e.g. ESP8266),
extension devices were already available for popular embedded systems, like Ethernet
Shield for Arduino boards (figure 297).

Figure 297: Ethernet shields for Arduino boards

Copper-based wired networks also bring an extra feature to the IoT designers – an
ability to power the device via a wired connection, e.g. PoE (Power over Ethernet) –
802.3af, 802.3at, 802.3bt [164]. Long-distance connections may be implemented using
optic-based, fibre connections, but those require physical medium converters that are
usually quite complex, pretty expensive and power consuming; thus, they apply only to
the niche IoT solutions.

The mentioned optical connections do not cover so-called LiFi,
as those are considered to be of a wireless nature[165].

A non-exhaustive list of some present and former wired networking solutions is presented

6.3. Media Layers - Wired Network Protocols

347

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/a000068_iso.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/nano-w5100-ethernet-shield-network-expansion-board-nano-v3-0-top.jpg_640x640.jpg?id=book%3Aiot-open2nded

in table 35.
Table 35: A Short Review of the Most Popular Wired Networking Standards

Name Communication
medium Max speed Topology Max range (single segment,

passive)

Ethernet
Twisted pair: 10BaseT
Coaxial: 10Base2/
10Base5
Fibre: 10BaseF

10 Mbps Bus, Star, Mixed
(Tree)

10Base2: 0.5–200 m (185 m)
10Base5: 500 m
10BaseT: 100 m (150 m)
10BaseF: 2 km (multimode
fibre)

Fast Ethernet
Twisted pair:
100BaseTx
Fibre: 100BaseFx

100 Mbps Star 100BaseTx: 100 m (Cat 5)
100BaseFx: 2 km

Gigabit
Ethernet

Twisted pair:
1000BaseT
Fibre: 1000BaseX (LX/
CX/SX)

1000BaseT: 1 Gbps
1000BaseX: 4.268 Gbps Star 1000BaseT: 100 m (Cat 5)

1000BaseLX: 5 km

Local Talk
(Apple) Twisted pair 0.23 Mbps Bus, Star

(PhoneNet) 1000 ft

Token ring Twisted pair 16 Mbps Star wired ring 22.5 m / 100 m (cable
dependent)

FDDI Fibre 100 Mbps (200 Mbps on two rings, but no
redundancy) Dual ring 2 km

The most popular wired networks are 10/100/1000 BaseT – twisted pair with Cat 5, 5e
and 6 cables. They require the IoT system to implement a full TCP/IP stack to operate
seamlessly with conventional Internet/Intranet/Extranet networks. Because it is usually
out of the scope of standard Arduino Uno processor capabilities to implement a full TCP
stack, there are typically dedicated processors on the network interfaces that assist the
central processor or even handle all networking tasks themselves.

6. Introduction to the IoT Communication and Networking

348

6.4. Media Layers - Wireless Network Protocols

Wireless connections define core communication for IoT devices. A vast and growing
amount of protocols, their variations and the dynamic IoT networking market all present
a non-solid situation where old “adult” Internet protocols coexist along with new ideas,
and IoT hardware and software platforms are more and more capable with every new
generation; thus new concepts appear almost daily. Currently, many IoT networking
protocols are defined for various layers of the protocol implementation stack, some
compatible while others are concurring. Figure 298 presents some selected protocols
existing for IoT. This covers only the most popular ones and gives a non-exhaustive view.
We discuss them in more detail below.

Figure 298: IoT protocols

PHY + MAC + LLC Layers
Below is a list of the most popular wireless protocols for the lower ISO/OSI layers 1–2
(Physical and Media Access Control); some also implement layer 3 – Networking in a
single component).

WiFi
WiFi is the set of standards for wireless communication using the 2.4 GHz or 5 GHz
band, slightly different spectrum in different countries. The core specification of the 2.4
GHz contains 14 channels with 20 MHz (currently 40 MHz) bandwidth. While there is no
centralised physical layer controller, collisions frequently occur even more with a growing
number of devices sharing the band. The collision is handled using CSMA-CA with a

6.4. Media Layers - Wireless Network Protocols

349

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/iot_protocols.png?id=book%3Aiot-open2nded

random binary exponential increase of repeating time.

With the high transmission speed and range usually not exceeding 100 m, it is widely
used as the direct replacement of wired Ethernet in local area networks. It is an excellent
choice when the amount of data to be transferred is larger, for example, video streams
or assembled IoT streams delivered by gateways.
It can also be used in direct connectivity for smart sensors and other IoT elements, but
the protocol is not designed to transmit small data packets. It is too energy-consuming
for many IoT applications, especially battery-powered devices.
Moreover, WiFi itself offers only 1-to-1 (figure 299 or star-like, 1-to-many (figure 300
topologies of connections, where the central point is a WiFi Access Point. It does not
provide mechanisms, e.g. self-reorganised, failure-tolerant mesh networks.

Figure 299: WiFi 1-to-1

Figure 300: WiFi Star Topology

WiFi has become a more and more popular choice for not-so-constrained IoT devices
because they need to implement a full TCP/IP stack, and those devices that are also not
so constrained with power resources. A list of WiFi standards and related transmission
speeds is present in table 36.

Table 36: WiFi Standards Summary
802.11
standard Frequency Channel width Transmission speed (maximum)

802.11b 2.4 GHz 20 MHz 11 Mbps

802.11a 5 GHz 20 MHz 54 Mbps

6. Introduction to the IoT Communication and Networking

350

https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/g16626.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/g16625.png?id=book%3Aiot-open2nded

802.11
standard Frequency Channel width Transmission speed (maximum)

802.11g 2.4 GHz 20 MHz 54 Mbps

802.11n 2.4 GHz and 5
GHz 20 & 40 MHz 450 Mbps, single-user MIMO

802.11ac 5 GHz
20, 40, 80 MHz (for 802.11ac wave1)
20, 40, 80, 160 MHz (for 802.11ac
wave2)

866.7 Mbps, single-user MIMO (for 802.11ac
wave1)
1.73 Gbps, multi-user MIMO (for 802.11ac wave2)

802.11ax 2.4 and 5 GHz 20,40, 80, 160 MHz 2.4 Gbps, multi-user MIMO

Bluetooth
Bluetooth is a prevalent method of connecting various devices at short distances. Almost
every computer and smartphone has a Bluetooth module built in. Standard has been
defined by Bluetooth SIG (Special Interest Group), founded in 1998. Bluetooth operates in
the 2.4 GHz band with 79 channels with automatic channel switching when interference
occurs (frequency hopping). The single channel offers up to about 1Mbps (where around
700kbps is available for the user) bandwidth, and it provides communication within the
range from up to 1 m (class 3, 1 mW) to up to 100 m (class 1, 100 mW). The most
prevalent version is class 2, with a 10 m range (2.5 mW).

Every Bluetooth device has a unique 48-bit MAC address.

Bluetooth offers various “profiles” for multimedia, serial ports, packet transmission
encapsulation (PAN), etc. The PAN (Personal Area Network) Profile and SPP (Serial Port)
are the most useful for IoT devices.

Now Bluetooth covers two branches: BR/EDR (Basic Rate/Enhanced Data Rate) for high-
speed audio and file transfer connections and LE (Low Energy) for short burst connections
[166].

Classical (before BLE and 4.0) Bluetooth networks can create ad-hoc, so-called WPAN
(Wireless Personal Area Networks), sometimes referenced as Piconets. Bluetooth Piconet
can handle up to 7 + 1 devices, where 1 device acts as Master and can contact up to
7 Slave devices. Only the Master device can initiate a communication. Fortunately for
the IoT approach, much Bluetooth hardware can act as Slave and Master simultaneously,
constituting a kind of router; thus, devices can include a tree-like structure named a
scatternet as presented in figure 301.

Figure 301: Bluetooth Scatternet

Bluetooth Low Energy (BLE) uses a simplified state machine implementation and thus

6.4. Media Layers - Wireless Network Protocols

351

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/bt_piconets.png?id=book%3Aiot-open2nded

is more constrained-devices friendly. It offers a limited range and is designed to expose
the state rather than transmit streamed data. However, it provides a speed reaching up
to about 1.4 Mbps (2 Mbps aerial throughput) if needed. It uses a 2.4 GHz band but is
designed to avoid interference with WiFi AP and clients. Communication is organised into
three advertising channels (located “between” WiFi) and 37 communication channels.

Latest Bluetooth implementations (protocol version 5.0 and newer, implemented in
mid-2017) offer a Bluetooth mesh network extending ubiquitous connectivity via a many-
to-many communication model dedicated to IoT devices, lighting, Industry 4.0, etc. The
Bluetooth mesh is layer-organised, and since there is no longer a Master-Slave model
used, but messages are relayed through the mesh, it is considered to be no longer the
Scatternet because of its flat structure [167]. Sample Bluetooth Mesh Network idea is
presented in figure 302 and a review of the Bluetooth protocols in table 37.

Figure 302: Example Topology of the Bluetooth 5 Mesh Network

Improvements introduced in the 5.1, 5.2, and 5.3 versions focused on localising
neighbouring nodes better, on audio use, and improving power efficiency. Version 5.4
introduces a new feature that allows nodes to send encrypted data in the advertising
frames (Encrypted Advertising Data). Another improvement is also focused on
advertising frames, making it possible to respond to such a frame (Periodic Advertising
with Responses). Both extensions are beneficial in the IoT world, allowing nodes to
send small, encrypted packets using an advertising mechanism. Bluetooth 5.4 enables
connectionless, bidirectional, secure communication with many low-power end nodes in
the star topology.

Table 37: Bluetooth Standard Summary
Bluetooth Transmission speed Remarks

1.0 21 kbps Few implementations

1.1 124 kbps

1.2 328 kbps First popular version

2.0 + EDR 3 Mbps Extended Data Rate

3.0 + HS 24 Mbps High Speed

3.1 + HS 40 Mbps

4.0 + LE 1 Mbps Low Energy

4.1 Designed for IoT

6. Introduction to the IoT Communication and Networking

352

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/g3737.png?id=book%3Aiot-open2nded

Bluetooth Transmission speed Remarks

5.0 50 Mbps One standard for all purposes

5.1 Better accuracy of node localization

5.2 Defined for Audio

5.3 Improved power efficiency

5.4 Improved security

Cellular
Cellular (mobile/GSM) networks are viable options for IoT communication because of
their omnipresence and long-range communication capabilities. Those networks use
orthogonality in frequency and time spaces. Cellular networks are presented by the
subsequent generations (G) – currently up to 5G on the market and 6G in the
experimental phase (introduced in years 2025-2029, country-dependent). Typical GSM
network technology, sometimes referenced as an era, runs out within about 10–15 years.
It is pretty close but still less than expected end-of-life for classes of IoT devices (15-25
years). GSM hardware was backwards compatible, enabling users to access older, even
before 2G GSM networks with the latest chips. Still, the presence of old-generation
networks becomes sparse, particularly in metropolitan areas, where recent generations
provide better coverage and capacity.

Figure 303 presents GSM network evolution over time and generations. Cellular networks
use different frequencies in different countries, yet available radio implementations
nowadays can usually handle all of them.

Figure 303: GSM network evolution and generations

Figure 304 presents sample GSM hardware (separate module and ready shield for the
Arduino platform).

6.4. Media Layers - Wireless Network Protocols

353

https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/gsm_evolution.png?id=book%3Aiot-open2nded

Figure 304: Sample GSM hardware for IoT prototyping

GSM protocols are proprietary, complex (including advanced ciphering) and require
dedicated hardware. Documentation and standards are not publicly available because of
security considerations (e.g., voice transmission ciphering details).
On the one hand, the GSM network seems to be a good solution for extended distant
IoT networks. They have many disadvantages, however: they require operators'
infrastructure, as GSM bands are not free, and GSM signalling requires quite decent
energy.

Professional operation requires licencing, and connecting
existing infrastructure involves a purchase of a unique
identifier (phone ID and a number given by the SIM card,
physical or virtual) and a service fee. With the 5G network,
GSM offers dedicated IoT services such as network slicing and
better energy efficiency.

Besides limited access constraints, one more particularly important exists: GSM modems
use quite a significant amount of energy when establishing a connection because they
need to broadcast their existence as far as possible to gain a link with a possibly distant-
located base station. It requires tremendous power and drains the battery (up to 10
W peak); thus, cellular solutions are unsuitable for IoT devices that use frequent data
communication and are constrained on energy resources.

6. Introduction to the IoT Communication and Networking

354

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/sim800l.jpg?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/a000105_iso.jpg?id=book%3Aiot-open2nded

ZigBee
ZigBee protocol is prevalent in Smart House but also in Industry appliances. Zigbee is
a wireless technology developed as an open standard to address the needs of low-cost,
low-power wireless machine-to-machine networks. However, it is more popular in the
industry because of the relatively higher equipment cost than WiFi, Bluetooth or other RF
modules.
The Zigbee standard operates on the radio bands 2.4 GHz for smart home applications,
915 MHz in the US and Australia, 868 MHz in Europe and 784 MHz in China. The
advantage of ZigBee is the possibility of forming mesh networks where nodes are
interconnected with others, so there are multiple paths connecting each pair of nodes.
Connections are dynamically updated, so when one node turns off, the path going
through that node will be automatically rerouted via another route.
Transmission speed is up to 250 kbps, with a theoretical range of up to 100 m but usually
to some 10–30 m.
ZigBee does not provide direct, unique IP-addressing on the Networking layer like
6LowPAN or Thread do. A single ZigBee network can handle up to 65000 devices.

Z-Wave
Z-Wave is a protocol similar in principle to the ZigBee, but hardware is cheaper; thus, it
is more towards inexpensive home automation systems. Like in ZigBee, Z-Wave operates
on different frequencies depending on the world region, usually between 865 MHz and
926 MHz. The transmission speed is up to 200 kbps, and the range is 100m. A single Z-
Wave network is pretty limited in the number of concurrent devices in one network, that
is, only 232 devices. Each Z-Wave network has a unique ID, and each node (device) in a
network has a unique 8-bit identifier.

Thread
Another standard [168] works using the same 802.15.4 radio and is based on IPv6. There
are some differences in the protocol, like address allocation. Like the Z-Wave mentioned
above and Zigbee, Thread uses mesh network topology. It incorporates encryption,
authentication, and secure key management to protect communication between devices
on the network. It is also energy efficient, allowing devices constituting a mesh network
to fall asleep and awake when only needed for communication. Those mechanisms cover
(among others) asynchronous communication, scheduled sleep, routing concerning the
devices' energy resources, adaptive data rates, wake-on-radio, and paging mechanisms
(waking up only a selected group of devices).

NFC
NFC (Near Field Communication) is a technology that enables two-way interactions
between electronic devices. One device mustn't have to be equipped with the power
source – the receiving radio signal powers it. That's why NFC is used in contactless
card technology, enabling devices to exchange data at a distance of less than 4 cm.
Transmission speed varies between 100–420 kbps, the range between active devices is
up to 10 cm, and the operating frequency is 13.56 MHz.

Sigfox
Sigfox [169] is the idea to connect objects with sub 1 GHz radio frequency. It uses the 900
MHz frequency range from the ISM band. The range is about 30–50 km (open space) and
3–10 km (urban environments). This standard uses a technology called Ultra Narrow Band

6.4. Media Layers - Wireless Network Protocols

355

(UNB). It has been designed to transmit data with deficient speed – from 10 to 1000 bps.
Thanks to small data packets, it consumes only 50 mW of power. It is intended to create
public networks only, so using Sigfox requires a subscription plan. The Sigfox network
covers many (but not all) European countries.

LoRa and LoRaWAN
LoRa (Long Range) is the technology for data transmission with a relatively low speed (20
bps do 41 kbps) and a range of about 2 km (new transceivers can transmit data up to 15
km). It uses CSS (Chirp Spread Spectrum) modulation in the 433 MHz or 868 ISM radio
band.

A chirp signal is characterized by a continuous frequency sweep over time. This means
that the frequency of the transmitted signal starts at some lower frequency and
continuously increases throughout the transmission of a single symbol. In LoRa the
starting frequency differs depending on the symbol encoded, and while the modulated
signal achieves the maximal value of the frequency starts from the minimal one. It means
that each chirp uses the whole available bandwidth. Chirp Spread Spectrum modulation
makes LoRa signals less susceptible to interference and noise and allows LoRa to achieve
long-range communication. LoRa modulation is characterized by two parameters:

▪ Spreading Factor determines the speed of the signal frequency change over time.
Higher spreading factors result in a longer communication range but lower data rates.
It also defines the number of bits encoded by one chirp.

▪ The Bandwidth of the LoRa signal determines the amount of spectrum occupied by
the transmitted signal. It can be 125, 250 or 500 kHz. It also specifies the sampling
frequency of the signal in the receiver.

Having these parameters it is possible to calculate the efficient data rate (in bps).
Because the range of LoRa communication is long, transmitters can interfere, so some
rules for the maximum time of occupation of the channel were introduced. In the
European Union, the maximum percentage of transmission time known as the Duty Cycle
is 1%. This gives a maximum transmission time of 864 seconds per day. Transmission
should be as short as possible, and the delay between following transmissions should
last a few minutes. The duty cycle together with bandwidth and spreading factor makes
it possible to calculate the maximum payload of the frame and the bitrate. Some online
calculators help set LoRa parameters to fulfil the local regulations [170].

The cell topology is the star, with the gateway at the central point. End devices use one-
hop communication with the gateway. A LoRaWAN gateway is usually connected to the
standard IP network with a central network server. The LoRa technology is supported as
LoRaWAN by LoRa Alliance [171] designed as Sigfox for public networks. Still, it can also
be used in private networks that do not require a subscription. LoRaWAN uses simplified
messaging, where collisions are solved at the server level.
The major assumption for the LoRaWAN network is each end-node device is within a
range of at least one LoRaWAN gateway.
There are 3 classes of devices in LoRa:

▪ Class A: where downlink is active only after the device uses uplink in a particular time
window (twice). It has the greatest energy efficiency among other classes. Downlink
opportunity appears asynchronously, so this class is for scenarios where low latency
is not a critical requirement.

6. Introduction to the IoT Communication and Networking

356

▪ Class B: with scheduled receive window, where the downlink is synchronised; thus,
the LoRa device listens to the downlink periodically. This causes increased energy use,
however.

▪ Class C: is a class where the device listens to the downlink communication almost
continuously. This brings the lowest latency in communication and the highest energy
demand compared to the other classes.

NET (NWY) Layer
Traditionally, we use IP addressing (usually masked by DNS to be more user-friendly)
when accessing Internet resources. IoT devices may also benefit from this approach.
However, constrained devices require special “editions” of the conventional protocols,
which are lightweight. The networking layer implements the basic communication
mechanisms on the packet level, like routing, delivery, proxying, etc. Many IoT,
lightweight implementations of the protocols presented below benefit or at least inherit
ideas from regular “adult” implementations. Please note that some protocols implement
more than one layer, as illustrated in image 298. We also provide a short reference of the
IPv4 and IPv6 to show advantages and drawbacks.

IPv4
Internet Protocol v4 (1981) is perhaps the most widespread networking protocol. The
predecessor of the IPv4 protocol, originally called IP, was introduced in 1974 and
supported up to 2^8 hosts, organised in 2^4 subnetworks (RFC 675).

In IPv4 (RFC 760/RFC791), the logical addressing space was extended to 2^32 devices,
which seemed to be quite much in 1981, but now we struggle with a lack of free
addressing space. This number is less because some addresses are reserved, e.g. for
broadcasting and due to the existence of different classes of addresses and their pools
[172]. Sample IPv4 address is, for example, 157.158.56.1.

Some relief to the suffocating Internet was brought as an ad-hoc solution with the NAT
(Network Address Translation) introduction. NAT-enabled subnetworks are those where
one public address represents a set of devices hidden behind the router. However, that
limits usability because of the lack of direct access and unique identification in the global
network level of the devices sharing private address spaces. Even so, more than 29 billion
IoT devices are expected to be connected to the Internet by the end of 2030, according
to Statista forecast [173]. They all need to be uniquely addressed!

IPv6
IPv6 is the next generation of the IPv4 protocol. It is supposed to replace IPv4. The
transition process is not as quick as expected because many Internet and intranet
services implement IPv4 only and would become inoperable if IPv4 were unavailable.
IPv6 brings addressing space large enough to cover all existing and future needs as
it is possible to forecast. The number of possible addresses is 2^128. Addresses are
presented by 8 groups of 4 hexadecimal values, e.g.
2001:0db8:0000:0042:0000:8a2e:0370:7334.

This brings the capability to uniquely identify any device connected to the Internet using
its IPv6 address. Regarding IoT, implementations have many drawbacks (IPv4 also has
them). IPv6 network is star-like, whereas IoT networks can benefit from the mesh model.
IPv6 network requires a controller providing free addresses (a DHCP server) – devices

6.4. Media Layers - Wireless Network Protocols

357

must contact it to obtain the address. Every IoT device needs to keep a list of devices
it corresponds with (ARP) to resolve their physical address. Moreover, full IPv6 stack
implementation requires large RAM when used.

6LoWPAN
The name is the abbreviation of “IPv6 over Low-Power Wireless Personal Area Networks”
[174] and, as it says, it is the IP-based network.
This protocol was introduced as a lightweight version of full IPv6, IoT-oriented.
This feature allows connecting 6LoWPAN networks with other networks using a so-called
Edge Router. Thus, every node can be visible on the Internet and uniquely addressable,
as stated in the IoT principles. This standard has been developed to operate on the radio
channel defined in 802.15.4 (as ZigBee, Z-Wave). It creates the adaptation layer that
allows the use of IPv6 over the 802.15.4 link. 6LoWPAN has been adopted in Bluetooth
Smart 4.2 standard as well.

6LoWPAN supports two addressing models: 64-bit and 16-bit. The former limits the
number of devices connected to one network to 64000 nodes. The primary frame size is
just 127 bytes (compared to full IPv6, where it is 1280 bytes at least). 6LoWPAN supports
unicast and broadcast. It also supports IP routing and link-layer mesh (802.15.5) that
introduces the fail-safe redundant, self-organising networks because the link-layer mesh
can have more than one Edge Router. 6LoWPAN uses autoconfiguration for neighbour
device discovery, so it does not require a DHCP server. It also supports ciphered
transportation using AES 128 (and AES 64 for constrained devices).

Figure 305: Sample 6LoWPAN and Internet Integration

6LoWPAN devices can be just nodes (Hosts) or nodes with routing capability (Routers) as
presented in figure 305.

6. Introduction to the IoT Communication and Networking

358

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/6lowpan2.png?id=book%3Aiot-open2nded

The Edge Router implements a gateway between 6LoWPAN and the regular IPv6 (IPv4)
network. It aims to translate “compressed” IPv6 addresses to ensure bi-directional
communication between the Internet and 6LoWPAN nodes. Note – the network structure
of the 6LoWPAN is logically flat (star/mesh with single addressing space), and devices
have unique MAC addresses to be recognisable by the Edge Router device.

6.4. Media Layers - Wireless Network Protocols

359

6.5. Application Protocols

The host layers protocols include session (SES), presentation (PRES) and application (APP)
levels. In particular, the APP (application) layer in regular Internet communication is
dominated by the HTTP protocol and XML-related derivatives, e.g. SoAP. Also, the FTP
protocol for file transfer is ubiquitous; it has existed since the beginning of the Internet.
Most of them are somehow related to the textual presentation of the information. They're
referenced as “WEB” protocols.
Although advanced and more powerful IoT devices frequently use these protocols, this is
problematic to implement in the constrained IoT devices world: even the simplest HTTP
header occupies at least 24 + 8 + 8 + 31 bytes without payload!
There is also a problem to cross firewall boundaries when communication between
subnetworks of IoT devices is expected to occur.

Some IoT-designed protocols are reviewed below.

MQTT
MQTT protocol [175] was invented especially for constrained IoT devices and low
bandwidth networks. It is located in APP layer 7 of the ISO/OSI stack but covers all
layers 5–7. It is a text-based protocol yet very compact and efficient. Protocol stack
implementation requires about 10 kB of RAM/flash only.

MQTT uses a TCP connection, so it requires an open connection channel (this is opposite
to UDP connections, where communications work in a way: “send and forget”). It is
considered a drawback of the original MQTT protocol, but MQTT variations exist for non-
TCP networks, e.g. MQTT-SN. Protocol definition provides reliability and delivery ensure
mechanisms.

The standard MQTT Message header is composed of just two bytes only (table 38)! There
are 16 MQTT message types. Some message types require variable-length headers.

Table 38: MQTT Standard Message Header
bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP flag Qos level RETAIN

byte 2 Remaining length

MQTT requires a centralised MQTT Broker located outside firewalls and NATs, where
all clients connect, send and receive messages via the publish/subscribe model. The
client can act as publisher and subscriber simultaneously. Figure 306 presents a publish-
subscribe model idea.

6. Introduction to the IoT Communication and Networking

360

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 306: MQTT Broker, Publishers and Subscribers

MQTT Message
MQTT is a text-based protocol and is data-agnostic. A message comprises a Topic (text)
and a Payload (data). The Topic is a directory-like string with a slash (”/“) delimiter. Thus,
all Topics constitute (or may represent) a tree-like folder structure similar to the file
system's. The subscriber can subscribe to a specific, single Topic or a variety of Topics
using wildcards, where:

▪ # stands for the entire branch,
▪ + stands for the single level.

Example Scenario

Publishers deliver some air quality information data in separate MQTT messages and for
various rooms at the department Inf of the Universities (SUT, RTU, ITMO) to the Broker:

Topic (publishers):
SUT/Inf/Room1/Sensor/Temperature
SUT/Inf/Corridor/Sensor/Temperature
SUT/Inf/Auditorium1/Sensor/Temperature
RTU/Inf/Room1/Sensor/Temperature
ITMO/Inf/Room1/Sensor/Temperature
RTU/Inf/Room1/Sensor/Humidity
SUT/Inf/Room3/Sensor/Temperature
RTU/Inf/Room1/Window/NorthSide/State

Subscriber 1 is willing to get all sensor data for SUT University, Inf (informatics)
department only, for any space:

Topic (subscription):
SUT/Inf/+/Sensor/#

Subscriber 2 is willing to get only Temperature data virtually from any sensor and in any
location in TalTech University:

6.5. Application Protocols

361

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/mqtt_broker.png?id=book%3Aiot-open2nded

Topic (subscription):
TalTech/#/Temperature

Subscriber 3 is willing to get any information from the sensors, but only for the RTU

Topic (subscription):
RTU/#

The payload (data) of the message is text as well, so if one needs to send binary data, it
is necessary to encode it (e.g. using Base64 encoding).

MQTT Broker
MQTT Broker is a server for both publishers and subscribers. The connection is initiated
from the client to the Broker, so assuming the Broker is located outside a firewall, it
breaks its boundaries.
The Broker provides QoS (Quality of Service) and can retain message payload. There are
three levels of MQTT Broker QoS (supplied in the message level).

▪ Unacknowledged service: Ensures that MQTT message is delivered at most once to
each subscriber.

▪ Acknowledged service: Ensures message delivery at least once to every subscriber.
The Broker expects acknowledgement to be sent from the subscriber. Otherwise, it
retransmits data.

▪ Assured service: This is a two-step delivery of the message and ensures the
transmission is delivered exactly once to every subscriber.

Providing unique packet IDs in the MQTT frame is vital for Acknowledged and Assured
services.

The DUP flag (byte 1, bit 3) represents information sent by the publisher if the message
is a “first try” (0) or a retransmitted one (1). It is primarily for internal purposes, and this
flag is never propagated to the subscribers.

MQTT offers a limited set of features (options):

▪ clean session flag for durable connections:
▪ if set TRUE, the Broker removes all of the client subscriptions on client disconnect,
▪ otherwise, the Broker collects messages (QoS depending) and delivers them on

client reconnecting; thus, connections remain idle.

▪ MQTT “will” - on connection loss, the Broker will automatically “simulate” publishing
of the predefined MQTT message (Topic and payload). All clients subscribing to this
message (whether directly or via a wildcard) will be notified immediately. It is an
excellent feature for failure/disaster discovery.

▪ message retaining: it is a feature for regular messages. Any message can be set
as retaining; in such case, the Broker will keep the last one. Once a new client
subscribes to a topic, they will receive a retained message immediately, even if the
publisher is not publishing any message. This feature is last known good value. It
is good to present the publisher's state, e.g. the publisher sends a retained message
meaning “I'm going offline” and then disconnects. Any client connecting will be

6. Introduction to the IoT Communication and Networking

362

notified immediately about the device (client) state.

Interestingly, MQTT is a protocol used by Facebook Messenger [176]. It is also
implemented natively in Microsoft Azure and Amazon Web Services (among many
others).

MQTT security is relatively weak. MQTT Broker can offer user and password verification
sent in plain text. However, all communication between client and Broker may be
encapsulated in SSL, encrypted stream.

A short comparison of MQTT and HTTP protocols is presented in table 39.
Table 39: MQTT vs HTTP

MQTT HTTP

Design Data-centric Document centric

Pattern Publish/Subscribe Request/response

Complexity Simple Complex

Message size Small, with 2 byte binary header Larger with text-based status

Service levels 3 QoS None

Implementation C/C++: 10–30 kB
Java ~100 kB Depends on application but hits > MB

Data distribution models 1-to-1
1-to-N 1-to-1

CoAP
CoAP protocol (RFC7252) originates from the REST (Representational State Transfer).
CoAP does not use a centralised server as MQTT does, but every single device “hosts”
a server on its own to provide available resources to the clients asking for service
offering distributed resources. CoAP uses UDP (compared to MQTT, which uses TCP)
and is stateless; thus, it does not require memory for tracking the state. The CoAP
implementation assumes every IoT device has a unique ID, and things can have multiple
representations. It is intended to link “things” together using existing standard methods.
It is resource-oriented (not document-oriented like HTTP/HTML) and designed for slow IoT
networks with high packet loss. It also supports devices to be periodically offline.
CoAP uses URIs to address services:

▪ coap://<host>[:<port>]/<path>[?<query>] to access a service/resource,
▪ a secure, encrypted version uses “coaps” instead of “coap”.

It supports various content types, can work with proxy and can be cached.
The protocol is designed to be compact and straightforward to implement. The stack
implementation takes only about 10 kB of RAM and 100 kB of storage. The header is only
4 bytes.

CoAP protocol has a binary header to decrease overhead, but the payload depends on
the content type. The initial, non-exclusive list of the payload types includes:

▪ text/plain (charset=utf-8) (ID=0, RFC2046, RFC3676, RFC5147),
▪ application/link-format (ID=40, RFC6690),
▪ application/xml (ID=41 RFC3023),

6.5. Application Protocols

363

▪ application/octet-stream (ID=42, RFC2045, RFC2046),
▪ application/json (ID=50, RFC7159).

CoAP endpoint services are identified by unique IP and port number. However, they
operate on the UDP instead of TCP (like, e.g. HTML does). The transfer in CoAP is made
using a non-reliable UDP network, so a message can appear duplicated, disappear, or
be delivered in another order than initially sent. Because of the nature of datagram
communication, messages are exchanged asynchronously between two endpoints,
transporting Requests and Responses. CoAP messages can be (non-exhaustive list):

▪ CON - Confirmable, those requiring ACK Acknowledge,
▪ NON - Non-Confirmable, those that do not need ACK,
▪ ACK - an acknowledgement message,
▪ RESET - sent if CON or NON was received, but the receiver cannot understand

the context, e.g. part of the communication is missing because of device restart,
messages memory loss, etc.

Empty RESET messages can be used to “ping” the device.

Because of the UDP network characteristics, CoAP provides an efficient yet
straightforward reliability mechanism to ensure successful delivery of messages:

▪ stop and wait for retransmission with exponential back-off for CON messages,
▪ duplicate message detection for CON and NON-messages.

The request-response pair is identified by a unique “Token”. Sample request-response
scenarios are presented in the images below. Sample CoAP message exchange scenarios
between client and server are presented (two per image) in figure 307 and figure 308.

Figure 307: CoAP scenario 1: confirmable with time delay payload answer (0 × 70) and immediate payload
answer (0 × 71)

6. Introduction to the IoT Communication and Networking

364

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/grafika8.png?id=book%3Aiot-open2nded

Figure 308: CoAP scenario 2: unrecognized request (0 × 72) and non-confirmable request (0 × 73)

The scenario in figure 307 (left, with token 0 × 70) is executed in a situation when a CoAP
server device (a node) needs some time to prepare data and cannot deliver information
right away. The scenario in figure 307 (right, with token 0 × 71) is used when a CoAP
server can provide information to the client immediately. The scenario in figure 308 (left,
with token 0 × 72) appears when a CoAP server cannot understand the request. The
scenario in figure 308 (right, with token 0 × 73) presents the situation where the request
to the CoAP server was made with a non-confirmable request.

AMQP
In its principles, the AMQP (Advanced Message Queuing Protocol) somehow recalls MQTT:
it is message-oriented and uses a central broker. There are data publishers and
consumers (that, in the case of the MQTT, are called subscribers). Messages are routed
from publishers to the Broker, where they hit so-called exchanges, and then they are
copied to the queues (0, 1 or more) that the consumer can later read from. A diagram of
the message's flow is present in the figure 309.

Figure 309: AMQP protocol messages flow

AMQP uses TCP/IP. AMQP is intended to work in non-reliable networks; thus, the protocol
has a message acknowledgement mechanism to ensure delivery. A message is removed
from the queue only if it has been acknowledged. Besides acknowledged delivery, it is

6.5. Application Protocols

365

https://www.roboticlab.eu/homelab/_detail/en/iot-open/communications_and_communicating_sut/grafika7.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/amqp-page-1.png?id=book%3Aiot-open2nded

also possible to use an unacknowledged one that does not involve acknowledgements. If
a message cannot be routed (for any reason), it can be returned to the publisher, dropped
or placed in the “dead letter queue”. The behaviour is defined along with a message.
Opposite to MQTT, in AMQP protocol, the connection status is unknown; thus, there is no
mechanism to let other devices know that some node has disconnected, such as the last
will in MQTT.

Queues
AMQP is a programmable protocol, so bindings are not defined by the Broker but rather
by the publisher. Queues are also created on-demand via external actors (mostly
consumers). Routing via bindings is provided with a message, and the Broker analyses it
to provide correct message handling and delivery.
Consumers can subscribe to the exchange and define a queue. Bindings then act as
filters so they receive only selected messages. A single queue is intended to handle
one consumer, but there does exist a possibility to let many consumers use a single
queue in the round-robin model. As in the protocol version 0.9, queues have the following
properties:

▪ Name,
▪ Durable flag - the queue and its contents are persistent across broker restarts,
▪ Exclusive flag - used exclusively by one consumer only,
▪ Auto-Delete flag - the queue is removed if the last consumer unsubscribed,
▪ Arguments - optional.

A queue name can be selected explicitly, or a broker may deliver one on demand. A
queue has to be expressly defined. An existing queue can be silently redeclared with
an exact attributes set. A declaration of the existing queue with different attributes set
throws an exception code 406 (PRECONDITION_FAILED).

Exchanges
Specification 0.9 of the AMQP protocol creates 4 exchanges (exchange types):

▪ Direct Exchange (its name is empty string or amq.direct); The default, Direct
Exchange, has a special feature that automatically creates and binds new queues,
where the queue's name is the same as a routing key; thus, it is ideal for unicast
communication. Assuming the queue's name is K (there can be more than one) and
there comes a message with routing key N, the message is routed only to those
queues, where K=N (figure 310).

6. Introduction to the IoT Communication and Networking

366

Figure 310: Direct Exchange working principles

▪ Fanout Exchange (amq.fanout); In the Fanout Exchange, all messages are routed to
all queues bound to the Fanout Exchange, regardless of their routing key. They help
broadcast the information (figure 311).

Figure 311: Fanout Exchange working principles

▪ Topic Exchange (amq.topic); Topic Exchange works similarly to MQTT topic
subscriptions: an AMQP queue bound to the Topic Exchange defines a pattern rather
than the fixed name, and messages with the matching routing key are copied to the
queue (312). It is great for multicasting.

6.5. Application Protocols

367

https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/amqp-page-2.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/amqp-page-3.png?id=book%3Aiot-open2nded

Figure 312: Topic Exchange working principles

▪ Headers Exchange (amq.match); This exchange uses message headers for routing
instead of routing keys. The routing key is ignored, and it is possible to bind a queue
to the Headers Exchange using more than one header. It is also possible to specify
whether it is enough to find a single matching among many conditions or all must
be satisfied. Sample routing is present in the figure 313: Q1 requires one of the
conditions to be satisfied, while Q2 requires all of the conditions to be satisfied to
execute a binding and route a message.

Figure 313: Headers Exchange working principles

Bindings
Bindings are rules defining how to route from exchange to queues. Depending on the
exchange type the publisher interacts with, the messages are routed using algorithms
that consider both exchange type, arguments and bindings. The publisher is responsible
for providing information on which queue will receive the messages from the exchange.

Consumers

6. Introduction to the IoT Communication and Networking

368

https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/amqp-copy_of_page-5.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/networking2/amqp-page-4.png?id=book%3Aiot-open2nded

Consumers subscribe to the queue to “consume” messages. There are two ways to let
consumers receive them: push API and pull API. For performance reasons, pull API should
be avoided. Once subscribed to the queue, the consumer receives a unique “consumer
tag” that is a string (text) and is later necessary to unsubscribe.

Messages
The essential, immutable AMQP frame size is 8 bytes, and the payload is up to 2GB.
Besides the header frame, messages have several virtually freely definable attributes,
but the Broker uses some predefined ones. Common attributes cover:

▪ content type,
▪ content encoding,
▪ routing key,
▪ persistence flag,
▪ message priority,
▪ message publishing timestamp,
▪ content expiration period,
▪ publisher app id.

Header attributes (used, e.g. by the Headers Exchanges) are optional and similar to X-
Headers in HTTP [177].
A payload in the AMQP message is a byte array. Broker does not process or review the
content, and it can be even zero length.

Exchanges, bindings and queues are named AMQP entities. To
draw an analogy to the real world:
▪ a queue is like your home,
▪ an exchange is a nearby train station,
▪ bindings are routes from the train station to your home,

and usually there are one, many, or eventually there are
none.

The address of the Broker is referenced with URI, similar to the CoAP (e.g.):

▪ amqp://<user>:<password>@<host>[:<port>]/<path> for raw connections,

6.5. Application Protocols

369

▪ “amqps” for TLS/SSL secure connections.

Starting AMQP version 1.0, broker control is no longer in the
specification; thus, it is expected to be defined in the higher-
level protocols. Thus, the AMQP protocol definition seems
inconsistent in the development over time.

6. Introduction to the IoT Communication and Networking

370

7. Programming for IoT Networking

The Internet of Things has revolutionised how we interact with the physical world mainly
because of the ease of data exchange, which we can make almost everywhere. IoT
relies on exchanging information between a myriad of devices and sensors, all of which
need to communicate with each other and often with the cloud or other servers. The
most exciting Internet of Things features are the possibility of using data transmission
between nodes, between nodes and servers, and the ability to read measurements and
control the behaviour of devices remotely. All these features use networking functionality.
IoT networking is the backbone of the IoT ecosystem, enabling devices to collect and
transmit data, receive instructions, and interact with other devices, even from other parts
of the world.

Network programming is specific to IoT devices. It uses hardware built into the
microcontroller or as an external communication coprocessor connected to the main MCU
using one of the popular embedded systems protocols. Many IoT MCUs include a variety
of programmable communication radios. Wired communication is possible with external
modules (if at all). On the low ISO/OSI layers, the most popular implementations include
802.11 (a variety of WiFi standards) and 802.15 (Bluetooth, Thread, Zigbee and so on).
Most modern radios implement many standards and use SDR (Software Defined Radio),
but due to constrained resources, use of all standards in parallel may not be possible.
Programming details are related to the specific hardware, programming language and
manufacturer, but standard templates and scenarios exist. Standardisation occurs mainly
in the context of higher-level protocols, such as CoAP, MQTT, HTTP, and similar - many
parts of the code are interchangeable between MCUs thanks to the HAL (Hardware
Abstraction Layer) libraries.

Fog class devices use OS-level networking for low-level communication. Thus, there is no
need to explicitly write a code that connects, e.g. to the WiFi AP, set up one or makes
Bluetooth pairing: it is configured and handled on the OS level.
That is not the case in edge-class devices, where developers must implement and
control the full networking stack. For this reason, parallel and asynchronous programming
techniques are extensively used (such as multitasking, asynchronous and even multicore
programming) because various communication tasks need to be addressed in the
background while the device's main logic is running.

In the previous chapters, some examples were presented for sensors, actuators and
other interesting elements, but without computer networks. This chapter presents some
elementary programming examples for networking using Espressif SoCs as the Edge-
class devices and Raspberry PI as the Fog-class device. Espressif SoCs can be used
as WiFi network controllers connected to other microcontrollers (e.g. Arduino Uno) and
programmed with “AT” commands. They can also be stand-alone microcontrollers with
on-board network capabilities.
ESP8266 and ESP32 can use WiFi connectivity, while many versions of ESP32 can also use
Bluetooth. In WiFi networks, the Espressif chips can operate as the network client (like
a regular computer connected to the Access Point or Router), as the network provider
(Access Point), or in both modes simultaneously (as the Repeater).
Currently, none of the STM32 devices supports WiFi, but the Wireless Series of the STM32
family have built-in Bluetooth radio and can use other 802.15.4 IoT protocols.

7. Programming for IoT Networking

371

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Nordic Semiconductor nRF52 family of SoCs supports Bluetooth, Bluetooth Low Energy,
and 802.15.4 protocols. These chips cannot connect to the WiFi network directly.

In the first part of this chapter, the emphasis will be put on the ESP8266 SoC, and all
the examples will present software for this chip. The second part of the chapter presents
some Scripting examples in Python (and Micropython) for the Fog and Edge classes of IoT
devices.

7. Programming for IoT Networking

372

7.1. Networking for Espressif

Expressif Networking Modes Explained
Espressif SoC devices ESP32 and ESP8266 can use a few WiFi network modes (applies to
layers 1–3 in ISO-OSI model). ESP8266 or ESP32 SoC can act as an Access Point (AP) - a
device to connect to like connecting a notebook to the Internet router, and as a client -
ESP then behaves like any WiFi-enabled device, e.g. tablet or mobile phone, connecting
to the Internet infrastructure. Interestingly, Espressif SoCs can act simultaneously in both
modes at once, even, if they have only one WiFi interface! Espressif SoCs can operate in
the following modes:

▪ as WiFi client connected to WiFi router (figure 314),

Figure 314: ESP client mode

▪ as independent WiFi access point (figure 315),

Figure 315: ESP AP mode

▪ as a repeater with devices connected to ESP and ESP connected to an external router
(figure 316),

7.1. Networking for Espressif

373

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 316: ESP dual mode

▪ as client and server in mesh network (figure 317).

Figure 317: ESP mesh networking

7.1.1. ESP AT Networking

ESP8266 SoC can work as the WiFi communication module for other microcontrollers. To
use the ESP8266 chip as a modem (figure 318), the module must be flashed with the
appropriate AT-command firmware. Espressif and other developers prepared the ready-
to-use firmware with the AT-command interpreter. This firmware can be downloaded from
the web and flashed into ESP8266 memory with a flash tool.

7. Programming for IoT Networking

374

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Figure 318: ESP8266 as a modem

AT commands were developed to control telephony modems.
They are often used to control modules connected via a serial
port. This includes GPS receivers, GSM/LTE modems, network
modules and others.

Preparing an ESP8266 chip with AT commands firmware

Downloading Software
▪ Download the latest ESP Flash Download Tool (v3.9.5 at the time of writing) from [178].

Other flashing tools like NodeMcu Flasher [179] exist. While using a single binary file, other
flashing tools can be used like esp8266 flasher [180], Tasmotizer [181] or others.

▪ Download the latest AT release from [182]

The newest version of Espressif firmware is not compatible with ESP8266 SoCs. In the
case of using ESP8266-based boards, download older AiThinker firmware available on
GitHub [183]. The firmware can come in different versions. It can be a set of binary files
which must be uploaded at specific memory addresses or as a combined single binary
file. Note that a single file is prepared for a particular flash memory size.

Flashing Procedure with single binary file
▪ Detect ESP8266 module parameters. Start the ESP Flash Download Tool

(“ESPFlashDownloadTool_v3.9.5”), set the COM port corresponding to your
programmer, and then click the START button to detect the board's specs. After
detection, one should see something like this (figure 319):

7.1. Networking for Espressif

375

Figure 319: Programming ESP8266 - detected parameters

▪ Gather information. Make a note of the flash memory size. In this example, we have
a 32 Mbit flash.

▪ Load the correct size of the combined AT binary firmware file (”.bin“) and set the offset
as 0×0; one should see something like the view present in figure 320.

7. Programming for IoT Networking

376

Figure 320: Programming ESP8266 - setting proper image file

▪ Click the START button and wait until the flashing process ends.

Flashing Procedure with a set of separate files
To flash the firmware from a set of files or to restore the original firmware:

▪ Detect ESP8266 module parameters. Start the ESP Flash Download Tool
(“ESPFlashDownloadTool_v3.9.5”), set the COM port corresponding to your
programmer, and then click the START button to detect the board's specs. After
detection, you should see something like the view present in figure 321.

7.1. Networking for Espressif

377

Figure 321: Programming ESP8266 - detected parameters

▪ From the downloaded AT firmware folder, open the “readme.txt” file containing the
information for flashing the firmware. Inside the file, there should be a “BOOT MODE”
section as follows:

BOOT MODE
download
Flash size 8Mbit: 512KB+512KB

boot_v1.2+.bin 0x00000
user1.1024.new.2.bin 0x01000
esp_init_data_default.bin 0xfc000 (optional)
blank.bin 0x7e000 & 0xfe000

Flash size 16Mbit: 512KB+512KB
boot_v1.5.bin 0x00000
user1.1024.new.2.bin 0x01000
esp_init_data_default.bin 0x1fc000 (optional)
blank.bin 0x7e000 & 0x1fe000

Flash size 16Mbit-C1: 1024KB+1024KB
boot_v1.2+.bin 0x00000
user1.2048.new.5.bin 0x01000
esp_init_data_default.bin 0x1fc000 (optional)
blank.bin 0xfe000 & 0x1fe000

7. Programming for IoT Networking

378

Flash size 32Mbit: 512KB+512KB
boot_v1.2+.bin 0x00000
user1.1024.new.2.bin 0x01000
esp_init_data_default.bin 0x3fc000 (optional)
blank.bin 0x7e000 & 0x3fe000

Flash size 32Mbit-C1: 1024KB+1024KB
boot_v1.2+.bin 0x00000
user1.2048.new.5.bin 0x01000
esp_init_data_default.bin 0x3fc000 (optional)
blank.bin 0xfe000 & 0x3fe000

▪ Indicate – correct for your ESP8266 flash size – firmware files & addresses. The
firmware is broken down into several files. They must be provided to the ESP Flash
Download Tool and the corresponding addresses in the readme.txt file above. For our
ESP8266 example, it should look like in figure 322.

Figure 322: Programming ESP8266 - reflashing settings

▪ Click the START button and wait until the flashing process ends.

Basic ESP8266 Networking
After uploading AT firmware and connecting the module to the PC, an ESP8266 can be
used as a modem with simple AT commands.

It is possible to connect ESP8266 to a PC with a TTL-Serial-to-USB adapter. Connection
to any microcontroller with a serial interface does not need an adapter. The default baud
rate settings are 115200,N,8,1. To check if the module works properly, a simple “AT”
command can be used:

AT

If the response is “OK”, the ESP8266 module is ready to use and accept other commands.
For example, to figure out exactly what firmware version is installed, the following
command can be used:

7.1. Networking for Espressif

379

AT+GMR

The AT command interpreter requires full “Enter” code. Both
“CR” and “LF” characters must be sent. Some popular terminal
programs like Putty do not send both characters. Be sure that
the serial terminal software sends “CRLF” at the end of the
line.

As a WiFi device, ESP8266 can connect to the network in such modes:

▪ mode 1 - client mode - the ESP8266 connecting to an existing wireless network,
▪ mode 2 - access point mode (AP) - other wireless network devices can be connected

to the ESP8266,
▪ mode 3 - dual mode (router) - the ESP8266 is an access point and connects

simultaneously to an existing wireless network.▪

By default, the ESP8266's stock firmware is set to AP mode. To confirm that, send the
following command:

AT+CWMODE?

The response should look like +CWMODE:2, where 2 corresponds to AP mode. To switch
ESP8266 to client device mode, the following command can be used:

AT+CWMODE=1

To scan the airwaves for all WiFi access points in range, the following command can be
used:

AT+CWLAP

Then, the ESP8266 will return a list of all the access points in range. In each line will be
an item consisting of the security level of the access point, the network name, the signal
strength, the MAC address, and the wireless channel used. Possible security levels of the
access point <0-4> mean:

▪ 0 - open,
▪ 1 - WEP,
▪ 2 - WPA_PSK,
▪ 3 - WPA2_PSK,
▪ 4 - WPA_WPA2_PSK.

The following command establishes the connection to the available access point with
proper ssid_name and password:

7. Programming for IoT Networking

380

AT+CWJAP=<ssid_name>,<password>

If everything is OK, the ESP8266 will answer:

WIFI CONNECTED
WIFI GOT IP
OK

ESP8266 is connected to the chosen AP and obtained a proper IP address. The following
command checks what is the assigned IP address:

AT+CIFSR

To set up ESP8266 to behave both as a WiFi client and a WiFi Access point, the mode
should be set to 3:

AT+CWMODE=3

7.1.2. Programming ESP8266 for the Network
Programming networking services with Espressif SoCs requires the connection
established on the networking layer between parties, mainly with TCP protocol.
Below are two code examples for ESP8266 of how to implement access point and
network station modes using libraries that came during installation of the development
environment for Arduino framework.
The third example shows how to send and receive a UDP packet while in client mode. It is
the full solution to connect ESP8266 to the NTP (Network Time Protocol) server to obtain
the current date and time from the Internet.
Examples on further pages show how to make a handy WiFi scanner showing available
networks nearby.

ESP8266 AP (Access Point) Mode
Based on a standard example, this program demonstrates how to program ESP8266 in
AP mode. After compilation and uploading this program, an ESP8266 starts serving as
the access point that can be connected to, e.g., a smartphone. It presents a simple web
server available at the local IP address 192.168.4.1 (the default address of the ESP access
point). This web server responds with a short message: “You are connected”.

#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>

/* Set these variables to your desired credentials. */
const char *ssid = "APmode";
const char *password = "password";

ESP8266WebServer server(80);

void hRoot() {
server.send(200, "text/html", "<h1>You are connected</h1>");

}

7.1. Networking for Espressif

381

/* Initialization */
void setup() {

delay(1500);
/* You can remove the password parameter

if you want the AP to be open. */
WiFi.softAP(ssid, password);

IPAddress myIP = WiFi.softAPIP();

server.on("/", hRoot);
server.begin();

}

void loop() {
server.handleClient();

}

ESP8266 Client Mode
This standard example demonstrates how to program ESP8266 in client mode. It tries to
connect to the WiFi network with a specified name (SSID) and password.

#include <ESP8266WiFi.h>
#include <ESP8266WiFiMulti.h>

ESP8266WiFiMulti WiFiMulti;

void setup() {
delay(1000);

// Initialise serial port to monitor program behaviour
Serial.begin(115200);

// We start by connecting to a WiFi network
WiFi.mode(WIFI_STA);
WiFiMulti.addAP("SSID", "password");

while(WiFiMulti.run() != WL_CONNECTED) {
delay(500);

}
delay(500);

}

void loop() {
const uint16_t port = 80;
const char * host = "192.168.1.1"; // ip or dns

// Use WiFiClient class to create TCP connections
WiFiClient client;

if (!client.connect(host, port)) {
delay(5000);
return;

}
// This will print the IP address assigned by the DHCP server
Serial.println(WiFi.localIP());

7. Programming for IoT Networking

382

// This will send the request to the server
client.println("Send this data to server");
// Trying to send the GET request possibly responses (with error)
// client.println("GET /echo");

//read back one line from server
String line = client.readStringUntil('\r');
Serial.println(line);

Serial.println("closing connection");
client.stop();

Serial.println("wait 5 sec...");
delay(5000);

}

ESP8266 and UDP
This sketch (based on a standard example) demonstrates how to program ESP8266 as an
NTP client using UDP packets (send and receive):

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

char ssid[] = "**************"; // your network SSID (name)
char pass[] = "**************"; // your network password

unsigned int localPort = 2390; // local port to listen for UDP packets

// NTP servers
IPAddress ntpServerIP; // 0.pl.pool.ntp.org NTP server address
const char* ntpServerName[] =
{"0.pl.pool.ntp.org","1.pl.pool.ntp.org","2.pl.pool.ntp.org","3.pl.pool.ntp.org"};

const int timeZone = 1; //Central European Time
int servernbr=0;

// NTP time stamp is in the first 48 bytes of the message
const int NTP_PACKET_SIZE = 48;

//buffer to hold incoming and outgoing packets
byte packetBuffer[NTP_PACKET_SIZE];

// A UDP instance to let us send and receive packets over UDP
WiFiUDP udp;

// Prototype of the function defined at the end of this file
// (required in Visual Studio Code)
void sendNTPpacket(IPAddress& address);

void setup()
{

Serial.begin(115200);
Serial.println();

Serial.print("Connecting to ");
Serial.println(ssid);

7.1. Networking for Espressif

383

// WiFi.persistent(false);
WiFi.mode(WIFI_OFF);
delay(2000);

// We start by connecting to a WiFi network
WiFi.mode(WIFI_STA);
delay(3000);
WiFi.begin(ssid, pass);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");

Serial.println("WiFi connected");
Serial.println("DHCP assigned IP address: ");
Serial.println(WiFi.localIP());

Serial.println("Starting UDP");
udp.begin(localPort);
Serial.print("Local port: ");
Serial.println(udp.localPort());

// first ntp server
servernbr = 0;

}

void loop()
{

//get a random server from the pool

WiFi.hostByName(ntpServerName[servernbr], ntpServerIP);
Serial.print(ntpServerName[servernbr]);
Serial.print(":");
Serial.println(ntpServerIP);

// send an NTP packet to a time server
sendNTPpacket(ntpServerIP);

// wait to see if a reply is available
delay(1000);

int cb = udp.parsePacket();
if (!cb) {

Serial.println("no packet yet");
if (servernbr = 5) {

servernbr =0;
}
else {

servernbr++;
}

}
else {

Serial.print("packet received, length=");
Serial.println(cb);
// We've received a packet, read the data from it
// read the packet into the buffer

7. Programming for IoT Networking

384

udp.read(packetBuffer, NTP_PACKET_SIZE);

// the timestamp starts at byte 40
// of the received packet and is four bytes,
// or two words, long. First, extract the two words:

unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
// combine the four bytes (two words) into a long integer
// this is NTP time (seconds since Jan 1 1900):
unsigned long secsSince1900 = highWord << 16 | lowWord;
Serial.print("Seconds since Jan 1 1900 = ");
Serial.println(secsSince1900);

// now convert NTP time into everyday time:
Serial.print("Unix time = ");
// Unix time starts on Jan 1 1970.
// In seconds, that's 2208988800:
const unsigned long seventyYears = 2208988800UL;
// subtract seventy years:
unsigned long epoch = secsSince1900 - seventyYears;
// print Unix time:
Serial.println(epoch);

// print the hour, minute and second:
// UTC is the time at Greenwich Meridian (GMT)
Serial.print("The UTC time is ");
// print the hour (86400 equals secs per day)
Serial.print((epoch % 86400L) / 3600);
Serial.print(':');
if (((epoch % 3600) / 60) < 10) {

// In the first 10 minutes of each hour, we'll want a leading '0'
Serial.print('0');

}
// print the minute (3600 equals secs per minute)
Serial.print((epoch % 3600) / 60);
Serial.print(':');
if ((epoch % 60) < 10) {

// In the first 10 seconds of each minute, we'll want a leading '0'
Serial.print('0');

}
Serial.println(epoch % 60); // print the second

}
// wait ten seconds before asking for the time again
delay(10000);

}

// send an NTP request to the time server at the given address
void sendNTPpacket(IPAddress& address)
{

Serial.print("sending NTP packet to: ");
Serial.println(address);
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval

7.1. Networking for Espressif

385

http://www.opengroup.org/onlinepubs/009695399/functions/memset.html

packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;

// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
udp.beginPacket(address, 123); //NTP requests are to port 123
udp.write(packetBuffer, NTP_PACKET_SIZE);
udp.endPacket();

}

7.1.3. ESP8266 Wifi Scanner

This sketch demonstrates how to scan WiFi networks. ESP8266 is programmed in access
point mode. All found WiFi networks will be printed in the serial monitor window (TTY).

#include "ESP8266WiFi.h"

void setup() {
Serial.begin(115200);

// Set WiFi to station mode and disconnect
// from an AP if it was previously connected
WiFi.mode(WIFI_STA);
WiFi.disconnect();
delay(100);

Serial.println("Setup done");
}

void loop() {
Serial.println("scan start");

// WiFi.scanNetworks will return the number of networks found
int n = WiFi.scanNetworks();
Serial.println("scan done");
if (n == 0)

Serial.println("no networks found");
else
{

Serial.print(n);
Serial.println(" networks found");
for (int i = 0; i < n; ++i)
{

// Print SSID and RSSI for each network found
Serial.print(i + 1);
Serial.print(": ");
Serial.print(WiFi.SSID(i));
Serial.print(" (");
Serial.print(WiFi.RSSI(i));
Serial.print(")");
Serial.println((WiFi.encryptionType(i) == ENC_TYPE_NONE)?" ":"*");

7. Programming for IoT Networking

386

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

delay(10);
}

}
Serial.println("");

// Wait a bit before scanning again
delay(5000);

}

7.1.4. Controlling LED with Simple Web Server

A sample Web application hosted on ESP8266 MCU is presented below.
This application allows it to control the state of the LED remotely, connecting to the
ESP8266 board with a web browser. The program presented is based on the example
“HelloServer” available in the ESP8266WebServer library. Some modifications were made
to simplify the program and to handle requests to turn the LED on and off. To check if
it works, adding WiFi network credentials and setting the led constant with the number
of GPIO to which the LED is connected is required. After a successful connection to the
WiFi, ESP8266 would present through the serial monitor the IP address (e.g. 192.168.4.1).
Writing in the address bar in the browser “HTTP://192.168.4.1” should return the serial
monitor message “hello from esp8266!”.

Assuming the address in the terminal is 192.168.4.1 one may use the following URLs to
disable and enable the LED, respectively:

http://192.168.4.1/LED0
http://192.168.4.1/LED1

#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>
#include <ESP8266mDNS.h>

#ifndef STASSID
#define STASSID "*********"
#define STAPSK "*********"
#endif

const char* ssid = STASSID;
const char* password = STAPSK;

ESP8266WebServer server(80);

const int led = 2;

void handleRoot() {
//Originally LED was controlled for every root request
//so it is required to comment the lines which modify the LED state
//digitalWrite(led, 1);
server.send(200, "text/plain", "hello from esp8266!\r\n");
//digitalWrite(led, 0);

}

7.1. Networking for Espressif

387

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
http://192.168.4.1/

void handleNotFound() {
//digitalWrite(led, 1);
String message = "File Not Found\n\n";
message += "URI: ";
message += server.uri();
message += "\nMethod: ";
message += (server.method() == HTTP_GET) ? "GET" : "POST";
message += "\nArguments: ";
message += server.args();
message += "\n";
for (uint8_t i = 0; i < server.args(); i++) {

message += " " + server.argName(i) + ": " + server.arg(i) + "\n";
}
server.send(404, "text/plain", message);
//digitalWrite(led, 0);

}

void setup(void) {
pinMode(led, OUTPUT);
//digitalWrite(led, 0);
Serial.begin(115200);
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
Serial.println("");

// Wait for connection
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

if (MDNS.begin("esp8266")) {
Serial.println("MDNS responder started");

}

server.on("/", handleRoot);

// request for turning led on
server.on("/LED1", [](){

server.send(200, "text/plain", "LED is ON");
digitalWrite(led, 1);

});

// request for turning led off
server.on("/LED0", [](){

server.send(200, "text/plain", "LED is OFF");
digitalWrite(led, 0);

});

server.onNotFound(handleNotFound);

server.begin();
Serial.println("HTTP server started");

}

7. Programming for IoT Networking

388

void loop(void) {
server.handleClient();
MDNS.update();

}

7.1. Networking for Espressif

389

7.2. Networking in Python

IoT microcontrollers contain an external or integrated communication module. Note that
IoT MCUs may use a variety of wireless communication interfaces such as Bluetooth,
802.15.4 standards (Zigbee, Thread) or Lora; this chapter does not deplete all scenarios
but instead presents a general idea. We have chosen a simple WiFi interface, which
is the easiest to use in most scenarios. Still, we are obviously not paying attention
to their drawbacks, e.g., high energy consumption. Below are code samples regarding
programming in Python for Raspberry Pi and Micropython for RP2040 (Pico W)
microcontrollers that integrate WiFi networking.

Connecting to the WiFi router
Python
In the case of fog class devices with Linux or Windows operating systems, connecting
to the network is controlled at the OS level with configuration tools. It is possible to
use Python script to execute those commands, but they are OS-specific or require a
dedicated hardware-specific library installed for Python. Monitoring progress or failure
is problematic and needs analysis of the standard output; thus, this approach is not
advised. Once the connection is present on the OS level, Python can quickly implement
application-level servers such as WWW, MQTT, CoAP, etc.

Micropython
In the case of the Micropython, it is necessary to set up a WiFi client on the Python code
level and explicitly connect it to the WiFi router. A sample code that connects to the
existing WiFi access point and prints the obtained configuration from the DHCP server is
present below:

import network
import socket
from time import sleep
import machine

ssid = '<your SSID comes here>'
password = '<your WiFi passphrase comes here>'

def connect():
#Connect to WLAN
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)
while wlan.isconnected() == False:

print('Waiting for connection...')
sleep(1)

print(wlan.ifconfig())

try:
connect()

except KeyboardInterrupt:
machine.reset()

7. Programming for IoT Networking

390

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

Setting up an access point
Python
Similarly, in the case of the STA mode, when using fog class devices with Linux or
Windows operating systems, the hosting of the WiFi access point is controlled on the OS
level, and it is done with OS configuration tools.

Micropython
IoT end node (edge) devices programmed in Python, such as RPI, RP2040 (RPI Pico),
ESP32, and many other network-enabled microcontrollers, can set up an access point to
connect other devices. Obviously, due to the limited resources (mainly RAM), the number
of hosted clients in parallel is limited. Below is a sample code (without an application
layer server, just networking layer AP) for RP2040.

A simple ESP 8266 (ESP-01) IoT module can act as AP and
STA in parallel, and it is possible to set up a fully functional
IP router (including DHCP server and NAT) with quite decent
bandwidth and automated mesh WiFi-based capability [184].

import network

ssid = 'MicroPython-WiFi-AP'
password = '0987654321'

ap = network.WLAN(network.AP_IF)
ap.config(essid=ssid, password=password)
ap.active(True)

while ap.active()==False:
pass

print(ap.ifconfig());

Hosting a service
IoT devices and cloud solutions usually host some service, e.g. providing users with a
temperature sensor reading or doing some activity, e.g. rotating a servo to unlock a
smart lock at the front door. In the case of the cloud and PCs, services used to be
implemented using some containerisation solution, such as Docker. End-node IoT devices
(edge) have no virtualisation capability due to limited resources, lack of the multitasking
OS and also because of direct access to the hardware components. However, fog-class
devices such as Raspberry Pi or nVidia Jetson can use containerisation.

Python
Sample web server for RPi in Python, using Flask[185] is straightforward and takes just
a few lines of code. Code, development and output are present in the figure 323.
192.168.1.171 is RPI's sample IP address obtained from the router, as the WiFi connection
is managed on the OS level, not via the Python app. The default WWW port for Flask
services is 5000; the sample result is in figure 323:

7.2. Networking in Python

391

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():
return 'Hello IOT-OPEN.EU'

if __name__ == '__main__':
app.run(debug=True, host='192.168.1.171')

Figure 323: Sample web server for RPi, using Flask library

Micropython
In the case of Micropython, the network-level connection is included in the script, so
there are two main sections in the following sample: connecting to the router and hosting
a dummy service, as in the example above (for RPi). Code, development and output
are present in the figure 324. The IP address of the example Micropython device is
192.168.1.170, and the service is hosted on port 5000:

import network
import socket
from time import sleep
import machine

ssid = '<Your WiFi SSID is here>'
password = '<Your WiFi passphrase is here>'

def connect():
#Connect to WLAN
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)
while wlan.isconnected() == False:

print('Waiting for connection...')
sleep(1)

print(wlan.ifconfig())

7. Programming for IoT Networking

392

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/screenshot_from_2023-09-29_17-58-36.png?id=book%3Aiot-open2nded

def index():
return 'Hello IOT-OPEN.EU'

try:
connect()
addr = socket.getaddrinfo('0.0.0.0', 5000)[0][-1]
s = socket.socket()
s.bind(addr)
s.listen(1)

while True:
try:

cl, addr = s.accept()
print('client connected from', addr)
request = cl.recv(1024)
cl.send(index())
cl.close()

except OSError as e:
print('Error, connection closed')

except KeyboardInterrupt:
machine.reset()

Figure 324: Sample web server for RP2040 (Pico W)

An example of how to integrate GPIO and web service in one solution for Micropython can
be found on the official RPI website [186].

7.2. Networking in Python

393

https://www.roboticlab.eu/homelab/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/screenshot_from_2023-10-01_18-11-23.png?id=book%3Aiot-open2nded

8. IoT Frameworks and Firmware

Internet of Things frameworks play a crucial role in developing IoT applications by
providing integration systems for implementing home automation complemented with
ready-to-use firmware for various hardware platforms. It allows the developers to create
whole control systems and IoT devices without writing the entire software from scratch.
This makes developing new ideas easier for non-experienced beginners and enthusiasts,
in some situations, to modify the behaviour of devices available on the market. What is
even more important is that they make it possible to integrate IoT equipment coming
from different vendors. There are several IoT frameworks available, with popular home
automation systems: Domoticz[187], OpenHAB[188], Home Assistant[189], and ready-to-
use firmware including Tasmota[190], ESPHome[191], ESPEasy[192], and ESPurna[193]. All
kinds of firmware initially was developed for ESP8266 SoCs but now have been
redesigned to support ESP32 and other hardware platforms. With the appearance of
new microcontrollers by Beken and Realtec companies, new versions of firmware were
created with OpenBeken[194] as the example. Each of these firmware choices has its
characteristics and use cases. They usually implement MQTT communication protocol
and specific protocols used in popular home automation systems, including Domoticz,
OpenHAB, and Home Assistant.

Tasmota
Tasmota is popular among IoT enthusiasts and developers who want complete control
and customization over their devices. It supports a wide variety of sensors and output
devices. Tasmota uses a web interface for configuration, making it easy to configure the
hardware connection of the microcontroller and peripheral elements. Tasmota provides
scripting capabilities, allowing users to define complex internal automation rules. The
support for the MQTT protocol allows easy integration with home automation platforms.
What is very important is that Tasmota has an active and supportive user community
that constantly extends the software's possibilities, including support for ESP32-based
devices.

ESPEasy
ESPEasy is designed for users who want a simplified IoT device configuration and
automation approach. It offers a user-friendly web interface for configuring devices. It
provides a set of pre-built plugins for everyday tasks and supports MQTT for integration
with platforms like Domoticz and OpenHAB. ESPEasy has an active community, although
not as active as Tasmota.

ESPHome
ESPHome is popular among Home Assistant users who want a seamless integration
experience. It uses a YAML-based configuration, which is highly readable and well-
documented. It's tightly integrated with Home Assistant, making it an excellent choice
for users. The IoT node can be configured in the Home Automation system, automatically
generating the proper firmware version with the final unit's configuration. ESPHome
allows users to define device configurations, sensor readings, and automation
straightforwardly. ESPHome users benefit from the Home Assistant community, providing
strong support.

ESPurna

8. IoT Frameworks and Firmware

394

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded

ESPurna is the least active but still interesting project. ESPurna supports MQTT for home
automation systems integration and compatibility with Domoticz, Home Assistant, and
other platforms.

OpenBeken
OpenBeken is the software created for the BK72xx series of SoCs based on Tasmota
functionality.

Table 40: Frameworks and their hardware compatibility
Framework Platform

Tasmota ESP8266, ESP32

ESPHome ESP8266, ESP32, RP2040, BK72xx, RTL87xx

ESPEasy ESP8266, ESP32

ESPurna ESP8266

OpenBeken BK72xx

The choice between Tasmota, ESP Easy, ESPHome, ESPurna and OpenBeken largely
depends on the user's specific needs, selection of hardware platform, and familiarity with
IoT device configuration. Table 40 presents hardware compatibility.

Node-RED tool
Node-RED [195] is an open-source, flow-based development tool and runtime environment
designed for visual programming. IBM Emerging Technology Services initially developed
it and is now part of the OpenJS Foundation. It can be used for any purpose that uses a
flow-based programming model, which is especially useful for IoT (Internet of Things) and
home automation applications.

Key aspects and features of Node-RED:

▪ Flow-Based Programming - Node-RED uses a flow-based programming paradigm
where developers create applications by connecting nodes in a visual editor. Each
node represents a data source, data output, or a specific function or task. Flows,
defined as sequences of connected nodes, represent the logic and behaviour of the
application.

▪ Visual Editor - Node-RED has a web-based visual editor, which makes it easy for users
to create and edit flows. The editor provides a drag-and-drop interface for adding,
configuring, and connecting nodes and flows to build applications visually.

▪ Extensible and Customizable - Node-RED has a wide range of pre-built nodes that can
be used for various tasks but are also highly extensible. Users can install additional
nodes from the Node-RED library, allowing for integration with various hardware
devices, services, and protocols. It is also possible to create custom nodes with the
functionality programmed in JavaScript.

▪ Integration Capabilities - Node-RED connects and integrates with various devices,
platforms, and APIs. It has built-in nodes for MQTT, HTTP, WebSocket, and more.
That's why it is popular in IoT and home automation.

▪ Debugging and Logging - Node-RED provides built-in debugging and logging
capabilities, making it easier to troubleshoot and monitor the behaviour of your

8. IoT Frameworks and Firmware

395

applications.

▪ Open Source - Node-RED is open source and has a vibrant and active community of
users and developers. This community contributes to its development and maintains
a repository of third-party nodes.

Node-RED is used in various applications, including home automation, industrial
automation, data processing, and IoT solutions. Its visual approach to programming and
extensive library of nodes make it a valuable tool for rapidly prototyping and building
applications that involve data processing and automation.

8. IoT Frameworks and Firmware

396

9. Notes for Further Studying

It is worth mentioning that new IoT ideas, hardware, software, and applications are
introduced every second. Because of that, technical, specific knowledge, mostly on
hardware and software, becomes rapidly outdated. Moreover, due to the amount of
information related to embedded systems development and IoT development, it is
impossible to assemble all information regarding the IoT world.

The IOT-OPEN.EU project is instantly evolving and always brings new content, but it
cannot be the only source of knowledge in the current stage of development. We
distribute all content via a single starting point, the website http://iot-open.eu, but we
suggest navigating to the online resources presented below. Those projects, websites and
resources are not related to our project. Still, we consider them a valuable source.

Please also note even if the IOT-OPEN.The EU project is CC BY-NC licenced, and the
resources listed below may need an access fee, registration, etc.

Many online platforms provide online courses by different universities on relevant topics
like the Internet of Things, embedded systems, programming languages, connectivity
and security, robotics, big data, computer vision, and many more. Some of the most
popular platforms are Coursera [196], edX [197], Udacity [198], Udemy [199], Skillshare
[200]. Some of these courses are free of charge, and at the end of these courses, a
certificate about skills can be acquired (often for an additional price).

Electronics Tutorials website [201] offers multiple basic electronics tutorial topics,
including AC and DC circuit theory, amplifiers, semiconductors, filters, Boolean algebra,
capacitors, power electronics, transistors, operational amplifiers, sequential logic, and
many more. It contains an extensive description of the theory with graphics and
explanations.

Embedded Experts website [202] focuses on commercial, certified courses mainly
related to the embedded platforms. It may help study technologies related to the Edge
Class and Fog Class devices that are fundamental for IoT and bare metal IoT
development.

Instructables [203] is a project platform with plenty of Internet of Things projects for
different knowledge levels. It is also possible to enrol on other classes with many lessons
that teach about specific related topics that are not limited only to electronics but also
cover issues such as sewing, food, craft, 3D printing, etc. One section of the Instructables
website offers multiple contests and challenges related to the topic, with valuable prizes.

Tinkercad is a simple, online 3D design and 3D platform that also allows users to model
and test circuits (https://www.tinkercad.com/circuits). With Tinkercad, it is possible to
program and simulate a virtual Arduino board online using different libraries and serial
monitors. There are also plenty of starter examples already available.

Wokwi [204] is an online (in-browser) IoT device simulator. You can implement some
simple and limited approaches, going beyond embedded systems. Note that it is not a

9. Notes for Further Studying

397

https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_p.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_b.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_m.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
https://www.roboticlab.eu/homelab/_detail/en/iot-open/czapka_e.png?id=book%3Aiot-open2nded
http://iot-open.eu/
https://www.tinkercad.com/circuits

distant lab (such as our IOT-OPEN.EU VREL lab [205]) but rather a software simulation of
the IoT hardware development boards, so your experience will be limited.
[1] “ITU Internet Reports 2005: The Internet of Things.” http://www.itu.int/osg/spu/
publications/internetofthings/
[2] “Special Report: The Internet of Things”, in “the Institute”, IEEE 2014,
http://theinstitute.ieee.org/static/special-report-the-internet-of-things
[3] “Towards a definition of the Internet of Things (IoT)”, IEEE 2015
[4] Standard for an Architectural Framework for the Internet of Things (IoT)
http://grouper.ieee.org/groups/2413/
[5] Ovidiu Vermesan, Peter Friess (eds.): Digitising the Industry, Internet of Things
Connecting the Physical, Digital and Virtual Worlds, River Publishers Series in
Communications, 2016
[6] Vision and Challenges for Realising the Internet of Things, CERP-IoT 2010,
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
[7] Salim Elbouanani, My Ahmed El Kiram, Omar Achbarou: “Introduction To The Internet
Of Things Security. Standardisation and research challenges”, 2015 11th International
Conference on Information Assurance and Security (IAS), IEEE 2015
[8] Ovidiu Vermesan, Peter Friess (eds.): Digitising the Industry, Internet of Things
Connecting the Physical, Digital and Virtual Worlds, River Publishers Series in
Communications, 2016
[9] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, Moussa
Ayyash: Internet of Things: A Survey on Enabling Technologies, Protocols and
Applications, IEEE Communications Surveys & Tutorials, Volume: 17, Issue: 4, 2015
[10] Arslan Munir, IFCIoT: Integrated Fog Cloud IoT Architectural Paradigm for the Future
Internet of Things, IEEE Consumer Electronics Magazine, Vol. 6, Issue 3, July 2017
[11] Arslan Munir, IFCIoT: Integrated Fog Cloud IoT Architectural Paradigm for the Future
Internet of Things, IEEE Consumer Electronics Magazine, Vol. 6, Issue 3, July 2017
[12] S.Matthews at http://www.ibmbigdatahub.com/blog/what-cognitive-iot, Cited:
11.06.2018.
[13] Cloudonomics: The Business Value of Cloud Computing
[14] Top 10 IoT security challenges
[15] IOTA: A permissionless distributed ledger for a new economy
[16] https://www.researchgate.net/publication/
273389706_Towards_a_smart_city_based_on_cloud_of_things_a_survey_on_the_smart_city_vision_and_paradigms
[17] https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-
Sensors.pdf
[18] https://www.w3.org/WoT/IG/wiki/
Use_cases_across_application_domains#Use_Cases_and_Applications
[19] https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-
Sensors.pdf
[20] http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/IoT-as-a-solution-for-
precision-farming
[21] https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-
Sensors.pdf
[22] https://news.panasonic.com/global/topics/2015/44009.html
[23] https://www.fitbit.com

9. Notes for Further Studying

398

http://www.itu.int/osg/spu/publications/internetofthings/
http://www.itu.int/osg/spu/publications/internetofthings/
http://theinstitute.ieee.org/static/special-report-the-internet-of-things
http://grouper.ieee.org/groups/2413/
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.ibmbigdatahub.com/blog/what-cognitive-iot
http://www.cloudonomics.com/
https://developer.ibm.com/articles/iot-top-10-iot-security-challenges/
https://www.iota.org/
https://www.researchgate.net/publication/273389706_Towards_a_smart_city_based_on_cloud_of_things_a_survey_on_the_smart_city_vision_and_paradigms
https://www.researchgate.net/publication/273389706_Towards_a_smart_city_based_on_cloud_of_things_a_survey_on_the_smart_city_vision_and_paradigms
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
https://www.w3.org/WoT/IG/wiki/Use_cases_across_application_domains#Use_Cases_and_Applications
https://www.w3.org/WoT/IG/wiki/Use_cases_across_application_domains#Use_Cases_and_Applications
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/IoT-as-a-solution-for-precision-farming
http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/IoT-as-a-solution-for-precision-farming
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
https://news.panasonic.com/global/topics/2015/44009.html
https://www.fitbit.com/

[24] http://www.businessinsider.com/wearable-technology-iot-devices-2016-8
[25] https://www.freertos.org/
[26] https://platformio.org/
[27] https://docs.platformio.org/en/latest/librarymanager/index.html
[28] https://tasmota.github.io/docs/
[29] https://esphome.io/index.html
[30] https://github.com/openshwprojects/OpenBK7231T_App
[31] https://github.com/letscontrolit/ESPEasy
[32] https://github.com/xoseperez/espurna
[33] https://www.freertos.org/
[34] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/
freertos.html
[35] https://gcc.gnu.org/
[36] https://www.eclipse.org/ide/
[37] https://platformio.org/
[38] https://www.arduino.cc/en/software
[39] https://docs.platformio.org/en/stable/projectconf/index.html
[40] https://docs.platformio.org/en/latest/librarymanager/index.html
[41] https://www.arduino.cc/reference/en/language/functions/time/delay/
[42] https://www.arduino.cc/reference/en/language/functions/time/millis/
[43] https://www.arduino.cc/en/Tutorial/DigitalPins
[44] https://www.arduino.cc/reference/en/language/functions/communication/serial/
readstring/
[45] https://docs.espressif.com/projects/esp-idf/en/v4.2/esp32/api-reference/peripherals/
adc.html
[46] https://docs.espressif.com/projects/esp-idf/en/v4.2/esp32/api-reference/peripherals/
dac.html
[47] https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/
timer.html
[48] https://dotnet.microsoft.com/en-us/apps/iot
[49] https://www.raspberrypi.com/documentation/computers/getting-started.html
[50] https://raspberrytips.com/install-pycharm-raspberry-pi/
[51] https://micropython.org
[52] https://code.visualstudio.com/docs/remote/remote-overview
[53] https://raspberrytips.com/thonny-ide-raspberry-pi/
[54] https://learn.microsoft.com/en-us/previous-versions/windows/iot-core/connect-your-
device/iotdashboard?source=recommendations
[55] https://www.tutorialspoint.com/csharp/
[56] https://www.tutorialspoint.com/csharp/
[57] https://www.tutorialspoint.com/csharp/
[58] https://www.tutorialspoint.com/csharp/
[59] Internet of Things: Architectures, Protocols, and Applications; P. S. Smruti, R. Sarangi.
https://doi.org/10.1155/2017/9324035

9. Notes for Further Studying

399

http://www.businessinsider.com/wearable-technology-iot-devices-2016-8
https://www.freertos.org/
https://platformio.org/
https://docs.platformio.org/en/latest/librarymanager/index.html
https://tasmota.github.io/docs/
https://esphome.io/index.html
https://github.com/openshwprojects/OpenBK7231T_App
https://github.com/letscontrolit/ESPEasy
https://github.com/xoseperez/espurna
https://www.freertos.org/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://gcc.gnu.org/
https://www.eclipse.org/ide/
https://platformio.org/
https://www.arduino.cc/en/software
https://docs.platformio.org/en/stable/projectconf/index.html
https://docs.platformio.org/en/latest/librarymanager/index.html
https://www.arduino.cc/reference/en/language/functions/time/delay/
https://www.arduino.cc/reference/en/language/functions/time/millis/
https://www.arduino.cc/en/Tutorial/DigitalPins
https://www.arduino.cc/reference/en/language/functions/communication/serial/readstring/
https://www.arduino.cc/reference/en/language/functions/communication/serial/readstring/
https://docs.espressif.com/projects/esp-idf/en/v4.2/esp32/api-reference/peripherals/adc.html
https://docs.espressif.com/projects/esp-idf/en/v4.2/esp32/api-reference/peripherals/adc.html
https://docs.espressif.com/projects/esp-idf/en/v4.2/esp32/api-reference/peripherals/dac.html
https://docs.espressif.com/projects/esp-idf/en/v4.2/esp32/api-reference/peripherals/dac.html
https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/timer.html
https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/timer.html
https://dotnet.microsoft.com/en-us/apps/iot
https://www.raspberrypi.com/documentation/computers/getting-started.html
https://raspberrytips.com/install-pycharm-raspberry-pi/
https://micropython.org/
https://code.visualstudio.com/docs/remote/remote-overview
https://raspberrytips.com/thonny-ide-raspberry-pi/
https://learn.microsoft.com/en-us/previous-versions/windows/iot-core/connect-your-device/iotdashboard?source=recommendations
https://learn.microsoft.com/en-us/previous-versions/windows/iot-core/connect-your-device/iotdashboard?source=recommendations
https://www.tutorialspoint.com/csharp/
https://www.tutorialspoint.com/csharp/
https://www.tutorialspoint.com/csharp/
https://www.tutorialspoint.com/csharp/
https://doi.org/10.1155/2017/9324035

[60] Internet of Things: Security Vulnerabilities and Challenges; I. Andrea, C.
Chrysostomou, G. Hadjichristofi, The 3rd IEEE ISCC 2015 International Workshop on Smart
City and Ubiquitous Computing Applications, https://doi.org/10.1109/ISCC.2015.7405513
[61] Rajan Arora, I2C Bus Pullup Resistor Calculation, Texas Instruments Application
Report
[62] https://www.maximintegrated.com/en/products/digital/one-wire.html
[63] https://en.wikipedia.org/wiki/ESP8266
[64] http://espressif.com/sites/default/files/documentation/0a-
esp8266ex_datasheet_en.pdf
[65] https://en.wikipedia.org/wiki/ESP8266
[66] https://www.esp8266.com/wiki/doku.php?id=esp8266-module-family
[67] https://www.wemos.cc/
[68] https://en.wikipedia.org/wiki/ESP8266
[69] https://en.wikipedia.org/wiki/ESP8266
[70] https://en.wikipedia.org/wiki/ESP8266
[71] https://en.wikipedia.org/wiki/ESP8266
[72] https://www.wemos.cc/
[73] https://www.espressif.com
[74] https://www.espressif.com/sites/default/files/documentation/
esp32_datasheet_en.pdf
[75] https://www.espressif.com/sites/default/files/documentation/esp32-pico-
d4_datasheet_en.pdf
[76] https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/hw-reference/modules-
and-boards.html
[77] https://www.espressif.com/sites/default/files/documentation/esp32-pico-
d4_datasheet_en.pdf
[78] https://www.espressif.com/sites/default/files/documentation/esp32-pico-
v3_datasheet_en.pdf
[79] https://www.espressif.com/sites/default/files/documentation/esp32-pico-
v3-02_datasheet_en.pdf
[80] https://www.espressif.com/sites/default/files/documentation/esp32-pico-
mini-02_datasheet_en.pdf
[81] https://www.espressif.com/sites/default/files/documentation/esp32-pico-
v3-zero_datasheet_en.pdf
[82] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-
started-devkitc.html
[83] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-
started-pico-kit.html
[84] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-
started-pico-kit-1.html
[85] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-
started-pico-devkitm-2.html
[86] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-
started-pico-kit.html
[87] https://docs.m5stack.com/en/atom/atomhub

9. Notes for Further Studying

400

https://doi.org/10.1109/ISCC.2015.7405513
https://www.maximintegrated.com/en/products/digital/one-wire.html
https://en.wikipedia.org/wiki/ESP8266
http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://en.wikipedia.org/wiki/ESP8266
https://www.esp8266.com/wiki/doku.php?id=esp8266-module-family
https://www.wemos.cc/
https://en.wikipedia.org/wiki/ESP8266
https://en.wikipedia.org/wiki/ESP8266
https://en.wikipedia.org/wiki/ESP8266
https://en.wikipedia.org/wiki/ESP8266
https://www.wemos.cc/
https://www.espressif.com/
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/hw-reference/modules-and-boards.html
https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/hw-reference/modules-and-boards.html
https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-v3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-v3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-v3-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-v3-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-mini-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-mini-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-v3-zero_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-v3-zero_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-kit-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-kit-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-devkitm-2.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-devkitm-2.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-pico-kit.html
https://docs.m5stack.com/en/atom/atomhub

[88] https://www.espressif.com/sites/default/files/documentation/
esp32-s2_datasheet_en.pdf
[89] https://www.espressif.com/en/products/modules
[90] https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/
user-guide-devkitm-1-v1.html
[91] https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/
user-guide-s2-devkitc-1.html
[92] https://www.espressif.com/sites/default/files/documentation/
esp32-s3_datasheet_en.pdf
[93] https://www.espressif.com/sites/default/files/documentation/
esp32-s3-pico-1_datasheet_en.pdf
[94] https://www.espressif.com/sites/default/files/documentation/
esp32-s3-mini-1_mini-1u_datasheet_en.pdf
[95] https://www.espressif.com/sites/default/files/documentation/
esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
[96] https://www.espressif.com/sites/default/files/documentation/
esp32-s3-wroom-2_datasheet_en.pdf
[97] https://www.espressif.com/en/products/modules
[98] https://www.waveshare.com/esp32-s3-pico.htm
[99] https://shop.m5stack.com/products/m5stamps3-with-2-54-header-pin
[100] https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32/hw-reference/chip-series-
comparison.html
[101] https://www.espressif.com/sites/default/files/documentation/
esp8684_datasheet_en.pdf
[102] https://www.espressif.com/sites/default/files/documentation/
esp8684_datasheet_en.pdf
[103] https://www.espressif.com/sites/default/files/documentation/
esp32-c3_datasheet_en.pdf
[104] https://www.espressif.com/sites/default/files/documentation/
esp32-c3-mini-1_datasheet_en.pdf
[105] https://www.espressif.com/sites/default/files/documentation/
esp32-c3-wroom-02_datasheet_en.pdf
[106] https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/
esp32c3/user-guide-devkitm-1.html
[107] https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/
esp32c3/user-guide-devkitc-02.html
[108] https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c3/
esp32-c3-lcdkit/user_guide.html
[109] https://www.adafruit.com/product/5405
[110] https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
[111] https://shop.m5stack.com/products/m5stamp-c3-mate-with-pin-headers
[112] https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32/hw-reference/chip-series-
comparison.html
[113] https://www.espressif.com/sites/default/files/documentation/
esp32-c6_datasheet_en.pdf
[114] https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/

9. Notes for Further Studying

401

https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://www.espressif.com/en/products/modules
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-devkitm-1-v1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-devkitm-1-v1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-s2-devkitc-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-s2-devkitc-1.html
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-pico-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-pico-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-mini-1_mini-1u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-mini-1_mini-1u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-2_datasheet_en.pdf
https://www.espressif.com/en/products/modules
https://www.waveshare.com/esp32-s3-pico.htm
https://shop.m5stack.com/products/m5stamps3-with-2-54-header-pin
https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32/hw-reference/chip-series-comparison.html
https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32/hw-reference/chip-series-comparison.html
https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-02.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-02.html
https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c3/esp32-c3-lcdkit/user_guide.html
https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c3/esp32-c3-lcdkit/user_guide.html
https://www.adafruit.com/product/5405
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://shop.m5stack.com/products/m5stamp-c3-mate-with-pin-headers
https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32/hw-reference/chip-series-comparison.html
https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32/hw-reference/chip-series-comparison.html
https://www.espressif.com/sites/default/files/documentation/esp32-c6_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c6_datasheet_en.pdf
https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitm-1/index.html

esp32-c6-devkitm-1/index.html
[115] https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/
esp32-c6-devkitc-1/index.html
[116] https://www.espressif.com/sites/default/files/documentation/
esp32-h2_datasheet_en.pdf
[117] https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32h2/
esp32-h2-devkitm-1/user_guide.html
[118] https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers.html
[119] https://www.st.com/en/microcontrollers-microprocessors/stm32wl-series.html
[120] https://www.st.com/en/microcontrollers-microprocessors/stm32wb0-series.html
[121] https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
[122] https://www.st.com/en/microcontrollers-microprocessors/stm32wba-series.html
[123] https://www.st.com/en/microcontrollers-microprocessors/stm32-high-performance-
mcus/products.html
[124] https://www.st.com/en/microcontrollers-microprocessors/stm32-mainstream-mcus/
products.html
[125] https://www.st.com/en/microcontrollers-microprocessors/stm32-ultra-low-power-
mcus/products.html
[126] https://www.st.com/en/microcontrollers-microprocessors/stm32-wireless-mcus/
products.html
[127] https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
[128] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-Zero-V1.3-Schematics.pdf
[129] https://www.raspberrypi.com/documentation/computers/raspberry-
pi.html#raspberry-pi-zero-w
[130] https://www.raspberrypi.com/documentation/computers/raspberry-
pi.html#raspberry-pi-zero-2-w
[131] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-A-Plus-V1.1-Schematics.pdf
[132] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-B-Plus-V1.2-Schematics.pdf
[133] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-2B-V1.2-Schematics.pdf
[134] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-3B-V1.2-Schematics.pdf
[135] https://www.raspberrypi.com/documentation/computers/raspberry-
pi.html#raspberry-pi-4-model-b
[136] https://www.raspberrypi.com/documentation/computers/raspberry-
pi.html#raspberry-pi-4-model-b
[137] https://www.raspberrypi.org/documentation/hardware/camera/README.md
[138] https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-
camera.md
[139] https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/README.md
[140] https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-
display.md
[141] https://github.com/ElectronicCats/mpu6050/tree/master

9. Notes for Further Studying

402

https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitm-1/index.html
https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitc-1/index.html
https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitc-1/index.html
https://www.espressif.com/sites/default/files/documentation/esp32-h2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-h2_datasheet_en.pdf
https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32h2/esp32-h2-devkitm-1/user_guide.html
https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32h2/esp32-h2-devkitm-1/user_guide.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wl-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb0-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wba-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus/products.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus/products.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-mainstream-mcus/products.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-mainstream-mcus/products.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-ultra-low-power-mcus/products.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-ultra-low-power-mcus/products.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-wireless-mcus/products.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-wireless-mcus/products.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-Zero-V1.3-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-Zero-V1.3-Schematics.pdf
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-zero-w
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-zero-w
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-zero-2-w
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-zero-2-w
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-A-Plus-V1.1-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-A-Plus-V1.1-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-B-Plus-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-B-Plus-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-2B-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-2B-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-3B-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-3B-V1.2-Schematics.pdf
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-4-model-b
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-4-model-b
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-4-model-b
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-4-model-b
https://www.raspberrypi.org/documentation/hardware/camera/README.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/README.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-display.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-display.md
https://github.com/ElectronicCats/mpu6050/tree/master

[142] http://www.electronics-tutorials.ws/io/io_3.html
[143] https://www.engineersgarage.com/articles/humidity-sensor
[144] http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-
arduino/
[145] http://wiki.seeedstudio.com/Grove-GPS/
[146] https://learn.adafruit.com/adafruit-arduino-lesson-16-stepper-motors/breadboard-
layout
[147] Kuaban, G. Suila, E. Gelenbe, T. Czachórski, P. Czekalski, and J. Kewir Tangka,
“Modelling of the Energy Depletion Process and Battery Depletion Attacks for Battery-
Powered Internet of Things (IoT) Devices”, sensors, vol. 23, issue 6183, 2023
[148] Kuaban, G. Suila, T. Czachórski, E. Gelenbe, P. Czekalski, “A Markov model for
a Self-Powered Green IoT Device with State-Dependent Energy Consumption”, 2023
4th International Conference on Communications, Information, Electronic and Energy
Systems (CIEES) 23 25 November, 2023, Plovdiv, Bulgaria, IEEE, 2023 (in press).
[149] Fredrik Häggström and Jerker Delsing, “IoT Energy Storage – A Forecast”, Energy
Harvesting and Systems 2018; 5(3-4)
[150] https://www.geothermal-energy.org/pdf/IGAstandard/EGC/2013/
EGC2013_CUR-16.pdf
[151] 11 Internet of Things (IoT) Protocols You Need to Know About, DesignSpark,
https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-need-
to-know-about
[152] http://www.ieee802.org/15/
[153] https://en.wikipedia.org/wiki/Network_address_translation
[154] https://support.microsoft.com/en-gb/help/103884/the-osi-model-s-seven-layers-
defined-and-functions-explained
[155] https://earthobservatory.nasa.gov/Features/OrbitsCatalog/
[156] http://web.mit.edu/modiano/www/6.263/lec22-23.pdf
[157] RFC 1631: http://www.faqs.org/rfcs/rfc1631.html
[158] https://en.wikipedia.org/wiki/ANT%2B
[159] http://www.zigbee.org/
[160] https://nodered.org/
[161] http://www.restapitutorial.com/lessons/whatisrest.html
[162] https://www.w3.org/TR/soap/
[163] https://www.w3schools.com/tags/ref_httpmethods.asp
[164] https://en.wikipedia.org/wiki/Power_over_Ethernet
[165] https://www.techworld.com/data/what-is-li-fi-everything-you-need-know-3632764/
[166] https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
[167] https://www.bluetooth.com/learn-about-bluetooth/feature-enhancements/mesh/
[168] https://www.threadgroup.org/Portals/0/documents/support/
ThreadOverview_633_2.pdf
[169] https://www.sigfox.com/en
[170] https://www.thethingsnetwork.org/airtime-calculator
[171] https://www.lora-alliance.org/
[172] https://en.wikipedia.org/wiki/IPv4
[173] https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

9. Notes for Further Studying

403

http://www.electronics-tutorials.ws/io/io_3.html
https://www.engineersgarage.com/articles/humidity-sensor
http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-arduino/
http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-arduino/
http://wiki.seeedstudio.com/Grove-GPS/
https://learn.adafruit.com/adafruit-arduino-lesson-16-stepper-motors/breadboard-layout
https://learn.adafruit.com/adafruit-arduino-lesson-16-stepper-motors/breadboard-layout
https://www.geothermal-energy.org/pdf/IGAstandard/EGC/2013/EGC2013_CUR-16.pdf
https://www.geothermal-energy.org/pdf/IGAstandard/EGC/2013/EGC2013_CUR-16.pdf
https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-need-to-know-about
https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-need-to-know-about
http://www.ieee802.org/15/
https://en.wikipedia.org/wiki/Network_address_translation
https://support.microsoft.com/en-gb/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-gb/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://earthobservatory.nasa.gov/Features/OrbitsCatalog/
http://web.mit.edu/modiano/www/6.263/lec22-23.pdf
http://www.faqs.org/rfcs/rfc1631.html
https://en.wikipedia.org/wiki/ANT%2B
http://www.zigbee.org/
https://nodered.org/
http://www.restapitutorial.com/lessons/whatisrest.html
https://www.w3.org/TR/soap/
https://www.w3schools.com/tags/ref_httpmethods.asp
https://en.wikipedia.org/wiki/Power_over_Ethernet
https://www.techworld.com/data/what-is-li-fi-everything-you-need-know-3632764/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/feature-enhancements/mesh/
https://www.threadgroup.org/Portals/0/documents/support/ThreadOverview_633_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/ThreadOverview_633_2.pdf
https://www.sigfox.com/en
https://www.thethingsnetwork.org/airtime-calculator
https://www.lora-alliance.org/
https://en.wikipedia.org/wiki/IPv4
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[174] Jonas Olsson, “6LoWPAN demystified”, 2014, Texas Instruments
[175] https://www.hivemq.com/mqtt/
[176] https://www.facebook.com/notes/facebook-engineering/building-facebook-
messenger/10150259350998920/
[177] https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
[178] https://www.espressif.com/en/support/download/other-tools
[179] https://github.com/nodemcu/nodemcu-flasher
[180] https://github.com/binaryupdates/esp01-firmware
[181] https://github.com/tasmota/tasmotizer
[182] https://bbs.espressif.com/viewforum.php?f=46
[183] http://www.electrodragon.com/w/ESP8266_AT-Command_firmware
[184] https://github.com/martin-ger/esp_wifi_repeater
[185] https://flask.palletsprojects.com
[186] https://www.raspberrypi.com/news/how-to-run-a-webserver-on-raspberry-pi-pico-w/
[187] https://www.domoticz.com/
[188] https://www.openhab.org/
[189] https://www.home-assistant.io/
[190] https://tasmota.github.io/docs/
[191] https://esphome.io/index.html
[192] https://espeasy.readthedocs.io/en/latest/
[193] https://github.com/xoseperez/espurna
[194] https://github.com/openshwprojects/OpenBK7231T_App
[195] https://nodered.org
[196] https://www.coursera.org/
[197] https://www.edx.org/
[198] https://www.udacity.com
[199] https://www.udemy.com/
[200] https://www.skillshare.com/
[201] https://www.electronics-tutorials.ws/
[202] https://embeddedexpert.io
[203] https://www.instructables.com
[204] https://wokwi.com/
[205] https://iot-open.eu

9. Notes for Further Studying

404

https://www.hivemq.com/mqtt/
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920/
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://www.espressif.com/en/support/download/other-tools
https://github.com/nodemcu/nodemcu-flasher
https://github.com/binaryupdates/esp01-firmware
https://github.com/tasmota/tasmotizer
https://bbs.espressif.com/viewforum.php?f=46
http://www.electrodragon.com/w/ESP8266_AT-Command_firmware
https://github.com/martin-ger/esp_wifi_repeater
https://flask.palletsprojects.com/
https://www.raspberrypi.com/news/how-to-run-a-webserver-on-raspberry-pi-pico-w/
https://www.domoticz.com/
https://www.openhab.org/
https://www.home-assistant.io/
https://tasmota.github.io/docs/
https://esphome.io/index.html
https://espeasy.readthedocs.io/en/latest/
https://github.com/xoseperez/espurna
https://github.com/openshwprojects/OpenBK7231T_App
https://nodered.org/
https://www.coursera.org/
https://www.edx.org/
https://www.udacity.com/
https://www.udemy.com/
https://www.skillshare.com/
https://www.electronics-tutorials.ws/
https://embeddedexpert.io/
https://www.instructables.com/
https://wokwi.com/
https://iot-open.eu/

